Selcuk Toprak , Brad P. Wham , Engin Nacaroglu , Muhammet Ceylan , Oguz Dal , Adem Eren Senturk
{"title":"地震地质灾害对供水系统和管道性能的影响:2023 年卡赫拉曼马拉什地震的启示","authors":"Selcuk Toprak , Brad P. Wham , Engin Nacaroglu , Muhammet Ceylan , Oguz Dal , Adem Eren Senturk","doi":"10.1016/j.enggeo.2024.107681","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the profound repercussions of geohazards on water supply systems, specifically in the aftermath of the Kahramanmaras earthquakes. The influence of these geohazards was far-reaching, impacting a vast geographical expanse affected by the seismic events. The primary focus of this investigation centers on the provinces of Adiyaman, Gaziantep, and Hatay, providing representative damage examples from the earthquake-affected areas. The study illustrates various types of pipe failures induced by geohazards such as fault displacements, landslides, and liquefaction. The analysis encompasses diverse cases of damage, starting from the water resources, progressing through issues at transmission lines, and extending to challenges faced by pumping and treatment facilities. Key aspects of damages and geohazards are presented, shedding light on the intricate dynamics of these interactions. It is crucial to note the scarcity of real cases in the existing literature, emphasizing the need for extensive site investigations and dedicated research endeavors to construct a comprehensive database of case histories in this domain. This study addresses this gap, contributing valuable insights into the tangible impacts of geohazards on water supply systems. By comprehending and effectively addressing the risks associated with geohazards, water supply organizations can fortify the safety and resilience of their infrastructure. The findings presented herein offer a foundation for informed decision-making and strategic planning, fostering a proactive approach to mitigate potential damages and enhance the overall robustness of water supply systems in regions prone to seismic events and associated geohazards.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"340 ","pages":"Article 107681"},"PeriodicalIF":6.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Seismic Geohazards on water supply systems and pipeline performance: Insights from the 2023 Kahramanmaras Earthquakes\",\"authors\":\"Selcuk Toprak , Brad P. Wham , Engin Nacaroglu , Muhammet Ceylan , Oguz Dal , Adem Eren Senturk\",\"doi\":\"10.1016/j.enggeo.2024.107681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study delves into the profound repercussions of geohazards on water supply systems, specifically in the aftermath of the Kahramanmaras earthquakes. The influence of these geohazards was far-reaching, impacting a vast geographical expanse affected by the seismic events. The primary focus of this investigation centers on the provinces of Adiyaman, Gaziantep, and Hatay, providing representative damage examples from the earthquake-affected areas. The study illustrates various types of pipe failures induced by geohazards such as fault displacements, landslides, and liquefaction. The analysis encompasses diverse cases of damage, starting from the water resources, progressing through issues at transmission lines, and extending to challenges faced by pumping and treatment facilities. Key aspects of damages and geohazards are presented, shedding light on the intricate dynamics of these interactions. It is crucial to note the scarcity of real cases in the existing literature, emphasizing the need for extensive site investigations and dedicated research endeavors to construct a comprehensive database of case histories in this domain. This study addresses this gap, contributing valuable insights into the tangible impacts of geohazards on water supply systems. By comprehending and effectively addressing the risks associated with geohazards, water supply organizations can fortify the safety and resilience of their infrastructure. The findings presented herein offer a foundation for informed decision-making and strategic planning, fostering a proactive approach to mitigate potential damages and enhance the overall robustness of water supply systems in regions prone to seismic events and associated geohazards.</p></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"340 \",\"pages\":\"Article 107681\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224002813\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224002813","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Impact of Seismic Geohazards on water supply systems and pipeline performance: Insights from the 2023 Kahramanmaras Earthquakes
This study delves into the profound repercussions of geohazards on water supply systems, specifically in the aftermath of the Kahramanmaras earthquakes. The influence of these geohazards was far-reaching, impacting a vast geographical expanse affected by the seismic events. The primary focus of this investigation centers on the provinces of Adiyaman, Gaziantep, and Hatay, providing representative damage examples from the earthquake-affected areas. The study illustrates various types of pipe failures induced by geohazards such as fault displacements, landslides, and liquefaction. The analysis encompasses diverse cases of damage, starting from the water resources, progressing through issues at transmission lines, and extending to challenges faced by pumping and treatment facilities. Key aspects of damages and geohazards are presented, shedding light on the intricate dynamics of these interactions. It is crucial to note the scarcity of real cases in the existing literature, emphasizing the need for extensive site investigations and dedicated research endeavors to construct a comprehensive database of case histories in this domain. This study addresses this gap, contributing valuable insights into the tangible impacts of geohazards on water supply systems. By comprehending and effectively addressing the risks associated with geohazards, water supply organizations can fortify the safety and resilience of their infrastructure. The findings presented herein offer a foundation for informed decision-making and strategic planning, fostering a proactive approach to mitigate potential damages and enhance the overall robustness of water supply systems in regions prone to seismic events and associated geohazards.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.