{"title":"植物与微生物之间的相互作用支撑着对湿地排水的截然不同的酶反应","authors":"Yunpeng Zhao, Chengzhu Liu, Enze Kang, Xingqi Li, Ye Deng, Xiaojuan Feng","doi":"10.1038/s41558-024-02101-3","DOIUrl":null,"url":null,"abstract":"The carbon storage of wetlands is related to inhibited enzyme activity (particularly phenol oxidase) under oxygen-deprived conditions. However, phenol oxidase response to field drainage is highly uncertain, constraining our ability to predict wetland carbon–climate feedbacks. Here, using literature data, laboratory simulations and a pair-wise survey of 30 diverse wetlands experiencing long-term (15–55 years) drainage across China, we show that while short-term drainage generally leads to increased phenol oxidative activity, its response to long-term drainage diverges in Sphagnum versus non-Sphagnum wetlands. In non-Sphagnum wetlands, long-term drainage is linked to increased plant secondary metabolites and decreased phenol oxidase-producing microbes, while in Sphagnum wetlands, drainage is linked to replacement of antimicrobial Sphagnum by vascular plants and increased phenol oxidative activity with cascading effects on hydrolytic enzymes. Our findings highlight that trait-based plant dynamics are pivotal to decipher wetland carbon dynamics and feedback to climate change under shifting hydrological regimes. The authors investigate the carbon storage response of wetland drainage in the context of rate-limiting phenol oxidase activity. They show divergent responses to short- and long-term drainage in Sphagnum versus non-Sphagnum wetlands determined by plant traits and plant–microbe interactions.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":29.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage\",\"authors\":\"Yunpeng Zhao, Chengzhu Liu, Enze Kang, Xingqi Li, Ye Deng, Xiaojuan Feng\",\"doi\":\"10.1038/s41558-024-02101-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The carbon storage of wetlands is related to inhibited enzyme activity (particularly phenol oxidase) under oxygen-deprived conditions. However, phenol oxidase response to field drainage is highly uncertain, constraining our ability to predict wetland carbon–climate feedbacks. Here, using literature data, laboratory simulations and a pair-wise survey of 30 diverse wetlands experiencing long-term (15–55 years) drainage across China, we show that while short-term drainage generally leads to increased phenol oxidative activity, its response to long-term drainage diverges in Sphagnum versus non-Sphagnum wetlands. In non-Sphagnum wetlands, long-term drainage is linked to increased plant secondary metabolites and decreased phenol oxidase-producing microbes, while in Sphagnum wetlands, drainage is linked to replacement of antimicrobial Sphagnum by vascular plants and increased phenol oxidative activity with cascading effects on hydrolytic enzymes. Our findings highlight that trait-based plant dynamics are pivotal to decipher wetland carbon dynamics and feedback to climate change under shifting hydrological regimes. The authors investigate the carbon storage response of wetland drainage in the context of rate-limiting phenol oxidase activity. They show divergent responses to short- and long-term drainage in Sphagnum versus non-Sphagnum wetlands determined by plant traits and plant–microbe interactions.\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41558-024-02101-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02101-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage
The carbon storage of wetlands is related to inhibited enzyme activity (particularly phenol oxidase) under oxygen-deprived conditions. However, phenol oxidase response to field drainage is highly uncertain, constraining our ability to predict wetland carbon–climate feedbacks. Here, using literature data, laboratory simulations and a pair-wise survey of 30 diverse wetlands experiencing long-term (15–55 years) drainage across China, we show that while short-term drainage generally leads to increased phenol oxidative activity, its response to long-term drainage diverges in Sphagnum versus non-Sphagnum wetlands. In non-Sphagnum wetlands, long-term drainage is linked to increased plant secondary metabolites and decreased phenol oxidase-producing microbes, while in Sphagnum wetlands, drainage is linked to replacement of antimicrobial Sphagnum by vascular plants and increased phenol oxidative activity with cascading effects on hydrolytic enzymes. Our findings highlight that trait-based plant dynamics are pivotal to decipher wetland carbon dynamics and feedback to climate change under shifting hydrological regimes. The authors investigate the carbon storage response of wetland drainage in the context of rate-limiting phenol oxidase activity. They show divergent responses to short- and long-term drainage in Sphagnum versus non-Sphagnum wetlands determined by plant traits and plant–microbe interactions.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.