Hong Yang , Ru-yi Han , Ruo-wen Gong , Ya-juan Zhang , Shi-shi Yang , Ge-zhi Xu , Wei Liu
{"title":"CST3 通过调节 Rap1 信号通路缓解视网膜血管渗漏。","authors":"Hong Yang , Ru-yi Han , Ruo-wen Gong , Ya-juan Zhang , Shi-shi Yang , Ge-zhi Xu , Wei Liu","doi":"10.1016/j.exer.2024.110042","DOIUrl":null,"url":null,"abstract":"<div><p>Retinal vascular leakage is a major event in several retinal diseases, including diabetic retinopathy (DR). In a previous study, we demonstrated that the aqueous humor concentration of Cystatin C (CST3), a physiological inhibitor of cysteine protease, is negatively correlated with the severity of diabetic macular edema. However, its function in the retina has not been clearly elucidated. In this study, we found a significant decrease in the aqueous humor concentration of CST3 with DR progression. Furthermore, we found that CST3 was expressed in retinal endothelial cells and that its expression was significantly downregulated in high glucose-treated human retinal microvascular endothelial cells <strong>(</strong>HRMECs) and the retinal vessels of oxygen-induced retinopathy (OIR) mice. Silencing CST3 expression resulted in decreased HRMEC migration and tubule formation ability. Exogenous addition of the CST3 protein significantly improved HRMEC migration and tubular formation. <em>In-vivo</em> experiments demonstrated that CST3 silencing induced retinal vascular leakage in WT mice, while its intravitreal injection significantly reduced retinal leakage in OIR mice. Mechanistically, CST3 promoted the expression of the downstream adhesion molecules, claudin5, VE-cadherin, and ZO-1, in retinal vascular cells by regulating the Rap1 signaling pathway. Therefore, this study revealed a novel mechanism by which CST3 improves retinal vascular function and provided evidence that it is a potential therapeutic target for retinal vascular leakage.</p></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"247 ","pages":"Article 110042"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CST3 alleviates retinal vascular leakage by regulating the Rap1 signaling pathway\",\"authors\":\"Hong Yang , Ru-yi Han , Ruo-wen Gong , Ya-juan Zhang , Shi-shi Yang , Ge-zhi Xu , Wei Liu\",\"doi\":\"10.1016/j.exer.2024.110042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Retinal vascular leakage is a major event in several retinal diseases, including diabetic retinopathy (DR). In a previous study, we demonstrated that the aqueous humor concentration of Cystatin C (CST3), a physiological inhibitor of cysteine protease, is negatively correlated with the severity of diabetic macular edema. However, its function in the retina has not been clearly elucidated. In this study, we found a significant decrease in the aqueous humor concentration of CST3 with DR progression. Furthermore, we found that CST3 was expressed in retinal endothelial cells and that its expression was significantly downregulated in high glucose-treated human retinal microvascular endothelial cells <strong>(</strong>HRMECs) and the retinal vessels of oxygen-induced retinopathy (OIR) mice. Silencing CST3 expression resulted in decreased HRMEC migration and tubule formation ability. Exogenous addition of the CST3 protein significantly improved HRMEC migration and tubular formation. <em>In-vivo</em> experiments demonstrated that CST3 silencing induced retinal vascular leakage in WT mice, while its intravitreal injection significantly reduced retinal leakage in OIR mice. Mechanistically, CST3 promoted the expression of the downstream adhesion molecules, claudin5, VE-cadherin, and ZO-1, in retinal vascular cells by regulating the Rap1 signaling pathway. Therefore, this study revealed a novel mechanism by which CST3 improves retinal vascular function and provided evidence that it is a potential therapeutic target for retinal vascular leakage.</p></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"247 \",\"pages\":\"Article 110042\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001448352400263X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448352400263X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
CST3 alleviates retinal vascular leakage by regulating the Rap1 signaling pathway
Retinal vascular leakage is a major event in several retinal diseases, including diabetic retinopathy (DR). In a previous study, we demonstrated that the aqueous humor concentration of Cystatin C (CST3), a physiological inhibitor of cysteine protease, is negatively correlated with the severity of diabetic macular edema. However, its function in the retina has not been clearly elucidated. In this study, we found a significant decrease in the aqueous humor concentration of CST3 with DR progression. Furthermore, we found that CST3 was expressed in retinal endothelial cells and that its expression was significantly downregulated in high glucose-treated human retinal microvascular endothelial cells (HRMECs) and the retinal vessels of oxygen-induced retinopathy (OIR) mice. Silencing CST3 expression resulted in decreased HRMEC migration and tubule formation ability. Exogenous addition of the CST3 protein significantly improved HRMEC migration and tubular formation. In-vivo experiments demonstrated that CST3 silencing induced retinal vascular leakage in WT mice, while its intravitreal injection significantly reduced retinal leakage in OIR mice. Mechanistically, CST3 promoted the expression of the downstream adhesion molecules, claudin5, VE-cadherin, and ZO-1, in retinal vascular cells by regulating the Rap1 signaling pathway. Therefore, this study revealed a novel mechanism by which CST3 improves retinal vascular function and provided evidence that it is a potential therapeutic target for retinal vascular leakage.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.