{"title":"通过在根白质中表达 Bt 杀线虫蛋白有效控制根结线虫。","authors":"Yong Wang, Mengnan Wang, Yali Zhang, Longwei Peng, Dadong Dai, Fengjuan Zhang, Jiang Zhang","doi":"10.1016/j.molp.2024.08.004","DOIUrl":null,"url":null,"abstract":"<p><p>Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient control of root-knot nematodes by expressing Bt nematicidal proteins in root leucoplasts.\",\"authors\":\"Yong Wang, Mengnan Wang, Yali Zhang, Longwei Peng, Dadong Dai, Fengjuan Zhang, Jiang Zhang\",\"doi\":\"10.1016/j.molp.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2024.08.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.08.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Efficient control of root-knot nematodes by expressing Bt nematicidal proteins in root leucoplasts.
Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.