Hsiao-Ching Huang, Daniel R Touchette, Mina Tadrous, Glen T Schumock, Saria Awadalla, Todd A Lee
{"title":"开始使用 SGLT2 抑制剂 1 年后的依从性模式:一项全国队列研究的结果。","authors":"Hsiao-Ching Huang, Daniel R Touchette, Mina Tadrous, Glen T Schumock, Saria Awadalla, Todd A Lee","doi":"10.37765/ajmc.2024.89591","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Adherence to medications is important for the management of chronic diseases. Although the proportion of days covered (PDC) is a common metric for measuring adherence, it may be insufficient to distinguish relevant differences in medication-taking behavior. Group-based trajectory models (GBTMs) have been used to better represent adherence over time. This study aims to examine adherence patterns 1 year after initiation among users of sodium-glucose cotransporter 2 (SGLT2) inhibitors using GBTMs and evaluate the ability of baseline characteristics to predict adherence trajectory.</p><p><strong>Study design: </strong>SGLT2 inhibitor new-user cohort study from 2014 to 2018.</p><p><strong>Methods: </strong>We calculated 12-month PDC and categorized patients with PDC of 80% or greater as adherent. We performed multivariable logistic regression on adherence status controlling for baseline covariates. GBTMs were fit to identify adherence patterns 12 months following SGLT2 inhibitor initiation. Five multinomial logistic regression models including different subsets of predictors were used to predict adherence trajectory group assignment.</p><p><strong>Results: </strong>In a cohort of 228,363 SGLT2 inhibitor users, the mean PDC was 57%, with 36% of the cohort being adherent. Overall, women and patients with anxiety or depression were less likely to be adherent. Six patterns of SGLT2 inhibitor adherence were identified with GBTMs: 1 fill (PDC = 0.08), early discontinuation (PDC = 0.22), consistently low adherence (PDC = 0.35), moderate adherence (PDC = 0.48), high adherence (PDC = 0.79), and near-perfect adherence (PDC = 0.95). All prediction models showed poor predictive accuracy (0.35).</p><p><strong>Conclusions: </strong>We found wide variation in adherence patterns among SGLT2 inhibitor users in a national cohort. Predictors from a health care claims database were unable to accurately predict adherence trajectory.</p>","PeriodicalId":50808,"journal":{"name":"American Journal of Managed Care","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adherence patterns 1 year after initiation of SGLT2 inhibitors: results of a national cohort study.\",\"authors\":\"Hsiao-Ching Huang, Daniel R Touchette, Mina Tadrous, Glen T Schumock, Saria Awadalla, Todd A Lee\",\"doi\":\"10.37765/ajmc.2024.89591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Adherence to medications is important for the management of chronic diseases. Although the proportion of days covered (PDC) is a common metric for measuring adherence, it may be insufficient to distinguish relevant differences in medication-taking behavior. Group-based trajectory models (GBTMs) have been used to better represent adherence over time. This study aims to examine adherence patterns 1 year after initiation among users of sodium-glucose cotransporter 2 (SGLT2) inhibitors using GBTMs and evaluate the ability of baseline characteristics to predict adherence trajectory.</p><p><strong>Study design: </strong>SGLT2 inhibitor new-user cohort study from 2014 to 2018.</p><p><strong>Methods: </strong>We calculated 12-month PDC and categorized patients with PDC of 80% or greater as adherent. We performed multivariable logistic regression on adherence status controlling for baseline covariates. GBTMs were fit to identify adherence patterns 12 months following SGLT2 inhibitor initiation. Five multinomial logistic regression models including different subsets of predictors were used to predict adherence trajectory group assignment.</p><p><strong>Results: </strong>In a cohort of 228,363 SGLT2 inhibitor users, the mean PDC was 57%, with 36% of the cohort being adherent. Overall, women and patients with anxiety or depression were less likely to be adherent. Six patterns of SGLT2 inhibitor adherence were identified with GBTMs: 1 fill (PDC = 0.08), early discontinuation (PDC = 0.22), consistently low adherence (PDC = 0.35), moderate adherence (PDC = 0.48), high adherence (PDC = 0.79), and near-perfect adherence (PDC = 0.95). All prediction models showed poor predictive accuracy (0.35).</p><p><strong>Conclusions: </strong>We found wide variation in adherence patterns among SGLT2 inhibitor users in a national cohort. Predictors from a health care claims database were unable to accurately predict adherence trajectory.</p>\",\"PeriodicalId\":50808,\"journal\":{\"name\":\"American Journal of Managed Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Managed Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.37765/ajmc.2024.89591\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Managed Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.37765/ajmc.2024.89591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Adherence patterns 1 year after initiation of SGLT2 inhibitors: results of a national cohort study.
Objectives: Adherence to medications is important for the management of chronic diseases. Although the proportion of days covered (PDC) is a common metric for measuring adherence, it may be insufficient to distinguish relevant differences in medication-taking behavior. Group-based trajectory models (GBTMs) have been used to better represent adherence over time. This study aims to examine adherence patterns 1 year after initiation among users of sodium-glucose cotransporter 2 (SGLT2) inhibitors using GBTMs and evaluate the ability of baseline characteristics to predict adherence trajectory.
Study design: SGLT2 inhibitor new-user cohort study from 2014 to 2018.
Methods: We calculated 12-month PDC and categorized patients with PDC of 80% or greater as adherent. We performed multivariable logistic regression on adherence status controlling for baseline covariates. GBTMs were fit to identify adherence patterns 12 months following SGLT2 inhibitor initiation. Five multinomial logistic regression models including different subsets of predictors were used to predict adherence trajectory group assignment.
Results: In a cohort of 228,363 SGLT2 inhibitor users, the mean PDC was 57%, with 36% of the cohort being adherent. Overall, women and patients with anxiety or depression were less likely to be adherent. Six patterns of SGLT2 inhibitor adherence were identified with GBTMs: 1 fill (PDC = 0.08), early discontinuation (PDC = 0.22), consistently low adherence (PDC = 0.35), moderate adherence (PDC = 0.48), high adherence (PDC = 0.79), and near-perfect adherence (PDC = 0.95). All prediction models showed poor predictive accuracy (0.35).
Conclusions: We found wide variation in adherence patterns among SGLT2 inhibitor users in a national cohort. Predictors from a health care claims database were unable to accurately predict adherence trajectory.
期刊介绍:
The American Journal of Managed Care is an independent, peer-reviewed publication dedicated to disseminating clinical information to managed care physicians, clinical decision makers, and other healthcare professionals. Its aim is to stimulate scientific communication in the ever-evolving field of managed care. The American Journal of Managed Care addresses a broad range of issues relevant to clinical decision making in a cost-constrained environment and examines the impact of clinical, management, and policy interventions and programs on healthcare and economic outcomes.