{"title":"考虑太阳齿轮轴向位置的双排行星齿轮组振动分析","authors":"Yan Cheng, Yanfang Liu, Qiang Zhang","doi":"10.1177/00368504241275402","DOIUrl":null,"url":null,"abstract":"<p><p>Double-row planetary gear set (PGS) is a common form of the PGS, which is relatively more complex than the regular PGSs. It consists of one sun gear, several long planets, several short planets, two ring gears, and one carrier. Due to the significantly wider tooth width of the long planet compared to the sun gear, the axial meshing position between the sun gear and the long planet can be adjusted. The vibrations of PGS should vary with different axial meshing positions. If the axial position of the sun gear is optimized, the vibrations of PGS can be reduced. This work establishes a dynamic model of a double-row PGS. The dynamic model considers the mesh forces of the gear pairs and the supporting forces of the bearing. The effect of the sun gear axial position on the sun gear and ring gear #2 vibrations are investigated. Finally, the recommended axial position for the sun gear is provided.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 3","pages":"368504241275402"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vibration analysis of a double-row planetary gear set considering the sun gear axial position.\",\"authors\":\"Yan Cheng, Yanfang Liu, Qiang Zhang\",\"doi\":\"10.1177/00368504241275402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Double-row planetary gear set (PGS) is a common form of the PGS, which is relatively more complex than the regular PGSs. It consists of one sun gear, several long planets, several short planets, two ring gears, and one carrier. Due to the significantly wider tooth width of the long planet compared to the sun gear, the axial meshing position between the sun gear and the long planet can be adjusted. The vibrations of PGS should vary with different axial meshing positions. If the axial position of the sun gear is optimized, the vibrations of PGS can be reduced. This work establishes a dynamic model of a double-row PGS. The dynamic model considers the mesh forces of the gear pairs and the supporting forces of the bearing. The effect of the sun gear axial position on the sun gear and ring gear #2 vibrations are investigated. Finally, the recommended axial position for the sun gear is provided.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"107 3\",\"pages\":\"368504241275402\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241275402\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241275402","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Vibration analysis of a double-row planetary gear set considering the sun gear axial position.
Double-row planetary gear set (PGS) is a common form of the PGS, which is relatively more complex than the regular PGSs. It consists of one sun gear, several long planets, several short planets, two ring gears, and one carrier. Due to the significantly wider tooth width of the long planet compared to the sun gear, the axial meshing position between the sun gear and the long planet can be adjusted. The vibrations of PGS should vary with different axial meshing positions. If the axial position of the sun gear is optimized, the vibrations of PGS can be reduced. This work establishes a dynamic model of a double-row PGS. The dynamic model considers the mesh forces of the gear pairs and the supporting forces of the bearing. The effect of the sun gear axial position on the sun gear and ring gear #2 vibrations are investigated. Finally, the recommended axial position for the sun gear is provided.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.