锐度感知前瞻,加速收敛并提高泛化能力

Chengli Tan, Jiangshe Zhang, Junmin Liu, Yihong Gong
{"title":"锐度感知前瞻,加速收敛并提高泛化能力","authors":"Chengli Tan, Jiangshe Zhang, Junmin Liu, Yihong Gong","doi":"10.1109/TPAMI.2024.3444002","DOIUrl":null,"url":null,"abstract":"<p><p>Lookahead is a popular stochastic optimizer that can accelerate the training process of deep neural networks. However, the solutions found by Lookahead often generalize worse than those found by its base optimizers, such as SGD and Adam. To address this issue, we propose Sharpness-Aware Lookahead (SALA), a novel optimizer that aims to identify flat minima that generalize well. SALA divides the training process into two stages. In the first stage, the direction towards flat regions is determined by leveraging a quadratic approximation of the optimization trajectory, without incurring any extra computational overhead. In the second stage, however, it is determined by Sharpness-Aware Minimization (SAM), which is particularly effective in improving generalization at the terminal phase of training. In contrast to Lookahead, SALA retains the benefits of accelerated convergence while also enjoying superior generalization performance compared to the base optimizer. Theoretical analysis of the expected excess risk, as well as empirical results on canonical neural network architectures and datasets, demonstrate the advantages of SALA over Lookahead. It is noteworthy that with approximately 25% more computational overhead than the base optimizer, SALA can achieve the same generalization performance as SAM which requires twice the training budget of the base optimizer.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharpness-aware Lookahead for Accelerating Convergence and Improving Generalization.\",\"authors\":\"Chengli Tan, Jiangshe Zhang, Junmin Liu, Yihong Gong\",\"doi\":\"10.1109/TPAMI.2024.3444002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lookahead is a popular stochastic optimizer that can accelerate the training process of deep neural networks. However, the solutions found by Lookahead often generalize worse than those found by its base optimizers, such as SGD and Adam. To address this issue, we propose Sharpness-Aware Lookahead (SALA), a novel optimizer that aims to identify flat minima that generalize well. SALA divides the training process into two stages. In the first stage, the direction towards flat regions is determined by leveraging a quadratic approximation of the optimization trajectory, without incurring any extra computational overhead. In the second stage, however, it is determined by Sharpness-Aware Minimization (SAM), which is particularly effective in improving generalization at the terminal phase of training. In contrast to Lookahead, SALA retains the benefits of accelerated convergence while also enjoying superior generalization performance compared to the base optimizer. Theoretical analysis of the expected excess risk, as well as empirical results on canonical neural network architectures and datasets, demonstrate the advantages of SALA over Lookahead. It is noteworthy that with approximately 25% more computational overhead than the base optimizer, SALA can achieve the same generalization performance as SAM which requires twice the training budget of the base optimizer.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3444002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3444002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Lookahead 是一种流行的随机优化器,可以加速深度神经网络的训练过程。然而,Lookahead 找到的解决方案的泛化效果往往不如其基础优化器(如 SGD 和 Adam)。为了解决这个问题,我们提出了锐度感知 Lookahead(SALA),这是一种新颖的优化器,旨在识别泛化效果好的平最小值。SALA 将训练过程分为两个阶段。在第一阶段,通过对优化轨迹进行二次逼近来确定平坦区域的方向,而不会产生任何额外的计算开销。而在第二阶段,则通过锐度感知最小化(SAM)来确定,这对提高训练末期的泛化效果尤为有效。与 Lookahead 相比,SALA 既保留了加速收敛的优点,又比基础优化器具有更优越的泛化性能。对预期超额风险的理论分析,以及对典型神经网络架构和数据集的实证结果,都证明了 SALA 相对于 Lookahead 的优势。值得注意的是,与基础优化器相比,SALA 的计算开销大约增加了 25%,却能达到与 SAM 相同的泛化性能,而 SAM 需要的训练预算是基础优化器的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sharpness-aware Lookahead for Accelerating Convergence and Improving Generalization.

Lookahead is a popular stochastic optimizer that can accelerate the training process of deep neural networks. However, the solutions found by Lookahead often generalize worse than those found by its base optimizers, such as SGD and Adam. To address this issue, we propose Sharpness-Aware Lookahead (SALA), a novel optimizer that aims to identify flat minima that generalize well. SALA divides the training process into two stages. In the first stage, the direction towards flat regions is determined by leveraging a quadratic approximation of the optimization trajectory, without incurring any extra computational overhead. In the second stage, however, it is determined by Sharpness-Aware Minimization (SAM), which is particularly effective in improving generalization at the terminal phase of training. In contrast to Lookahead, SALA retains the benefits of accelerated convergence while also enjoying superior generalization performance compared to the base optimizer. Theoretical analysis of the expected excess risk, as well as empirical results on canonical neural network architectures and datasets, demonstrate the advantages of SALA over Lookahead. It is noteworthy that with approximately 25% more computational overhead than the base optimizer, SALA can achieve the same generalization performance as SAM which requires twice the training budget of the base optimizer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diversifying Policies with Non-Markov Dispersion to Expand the Solution Space. Integrating Neural Radiance Fields End-to-End for Cognitive Visuomotor Navigation. Variational Label Enhancement for Instance-Dependent Partial Label Learning. TagCLIP: Improving Discrimination Ability of Zero-Shot Semantic Segmentation. Efficient Neural Collaborative Search for Pickup and Delivery Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1