基于机器学习的多参数磁共振成像放射组学提名图对直肠癌神经周围侵犯的预测研究:一项试点研究

Yueyan Wang, Aiqi Chen, Kai Wang, Yihui Zhao, Xiaomeng Du, Yan Chen, Lei Lv, Yimin Huang, Yichuan Ma
{"title":"基于机器学习的多参数磁共振成像放射组学提名图对直肠癌神经周围侵犯的预测研究:一项试点研究","authors":"Yueyan Wang, Aiqi Chen, Kai Wang, Yihui Zhao, Xiaomeng Du, Yan Chen, Lei Lv, Yimin Huang, Yichuan Ma","doi":"10.1007/s10278-024-01231-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to establish and validate the efficacy of a nomogram model, synthesized through the integration of multi-parametric magnetic resonance radiomics and clinical risk factors, for forecasting perineural invasion in rectal cancer. We retrospectively collected data from 108 patients with pathologically confirmed rectal adenocarcinoma who underwent preoperative multiparametric MRI at the First Affiliated Hospital of Bengbu Medical College between April 2019 and August 2023. This dataset was subsequently divided into training and validation sets following a ratio of 7:3. Both univariate and multivariate logistic regression analyses were implemented to identify independent clinical risk factors associated with perineural invasion (PNI) in rectal cancer. We manually delineated the region of interest (ROI) layer-by-layer on T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences and extracted the image features. Five machine learning algorithms were used to construct radiomics model with the features selected by least absolute shrinkage and selection operator (LASSO) method. The optimal radiomics model was then selected and combined with clinical features to formulate a nomogram model. The model performance was evaluated using receiver operating characteristic (ROC) curve analysis, and its clinical value was assessed via decision curve analysis (DCA). Our final selection comprised 10 optimal radiological features and the SVM model showcased superior predictive efficiency and robustness among the five classifiers. The area under the curve (AUC) values of the nomogram model were 0.945 (0.899, 0.991) and 0.846 (0.703, 0.99) for the training and validation sets, respectively. The nomogram model developed in this study exhibited excellent predictive performance in foretelling PNI of rectal cancer, thereby offering valuable guidance for clinical decision-making. The nomogram could predict the perineural invasion status of rectal cancer in early stage.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study.\",\"authors\":\"Yueyan Wang, Aiqi Chen, Kai Wang, Yihui Zhao, Xiaomeng Du, Yan Chen, Lei Lv, Yimin Huang, Yichuan Ma\",\"doi\":\"10.1007/s10278-024-01231-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to establish and validate the efficacy of a nomogram model, synthesized through the integration of multi-parametric magnetic resonance radiomics and clinical risk factors, for forecasting perineural invasion in rectal cancer. We retrospectively collected data from 108 patients with pathologically confirmed rectal adenocarcinoma who underwent preoperative multiparametric MRI at the First Affiliated Hospital of Bengbu Medical College between April 2019 and August 2023. This dataset was subsequently divided into training and validation sets following a ratio of 7:3. Both univariate and multivariate logistic regression analyses were implemented to identify independent clinical risk factors associated with perineural invasion (PNI) in rectal cancer. We manually delineated the region of interest (ROI) layer-by-layer on T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences and extracted the image features. Five machine learning algorithms were used to construct radiomics model with the features selected by least absolute shrinkage and selection operator (LASSO) method. The optimal radiomics model was then selected and combined with clinical features to formulate a nomogram model. The model performance was evaluated using receiver operating characteristic (ROC) curve analysis, and its clinical value was assessed via decision curve analysis (DCA). Our final selection comprised 10 optimal radiological features and the SVM model showcased superior predictive efficiency and robustness among the five classifiers. The area under the curve (AUC) values of the nomogram model were 0.945 (0.899, 0.991) and 0.846 (0.703, 0.99) for the training and validation sets, respectively. The nomogram model developed in this study exhibited excellent predictive performance in foretelling PNI of rectal cancer, thereby offering valuable guidance for clinical decision-making. The nomogram could predict the perineural invasion status of rectal cancer in early stage.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01231-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01231-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在建立和验证一个通过整合多参数磁共振放射组学和临床风险因素而合成的提名图模型,用于预测直肠癌的神经周围侵犯。我们回顾性地收集了2019年4月至2023年8月期间在蚌埠医学院第一附属医院接受术前多参数磁共振成像检查的108例病理确诊直肠腺癌患者的数据。该数据集随后按照 7:3 的比例分为训练集和验证集。通过单变量和多变量逻辑回归分析来确定与直肠癌会阴部侵犯(PNI)相关的独立临床风险因素。我们在 T2 加权成像(T2WI)和弥散加权成像(DWI)序列上逐层人工划分感兴趣区(ROI),并提取图像特征。使用五种机器学习算法构建放射组学模型,并通过最小绝对收缩和选择算子(LASSO)方法选择特征。然后选出最佳放射组学模型,并将其与临床特征相结合,形成一个提名图模型。模型的性能通过接收者操作特征曲线(ROC)分析进行评估,其临床价值则通过决策曲线分析(DCA)进行评估。我们最终选择了 10 个最佳放射学特征,在五个分类器中,SVM 模型显示出卓越的预测效率和稳健性。在训练集和验证集上,提名图模型的曲线下面积(AUC)值分别为 0.945 (0.899, 0.991) 和 0.846 (0.703, 0.99)。本研究建立的提名图模型在预测直肠癌的PNI方面表现出色,从而为临床决策提供了有价值的指导。该提名图可以预测早期直肠癌的会阴部浸润状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study.

This study aimed to establish and validate the efficacy of a nomogram model, synthesized through the integration of multi-parametric magnetic resonance radiomics and clinical risk factors, for forecasting perineural invasion in rectal cancer. We retrospectively collected data from 108 patients with pathologically confirmed rectal adenocarcinoma who underwent preoperative multiparametric MRI at the First Affiliated Hospital of Bengbu Medical College between April 2019 and August 2023. This dataset was subsequently divided into training and validation sets following a ratio of 7:3. Both univariate and multivariate logistic regression analyses were implemented to identify independent clinical risk factors associated with perineural invasion (PNI) in rectal cancer. We manually delineated the region of interest (ROI) layer-by-layer on T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences and extracted the image features. Five machine learning algorithms were used to construct radiomics model with the features selected by least absolute shrinkage and selection operator (LASSO) method. The optimal radiomics model was then selected and combined with clinical features to formulate a nomogram model. The model performance was evaluated using receiver operating characteristic (ROC) curve analysis, and its clinical value was assessed via decision curve analysis (DCA). Our final selection comprised 10 optimal radiological features and the SVM model showcased superior predictive efficiency and robustness among the five classifiers. The area under the curve (AUC) values of the nomogram model were 0.945 (0.899, 0.991) and 0.846 (0.703, 0.99) for the training and validation sets, respectively. The nomogram model developed in this study exhibited excellent predictive performance in foretelling PNI of rectal cancer, thereby offering valuable guidance for clinical decision-making. The nomogram could predict the perineural invasion status of rectal cancer in early stage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Energy CT for Deep Learning-Based Segmentation and Volumetric Estimation of Early Ischemic Infarcts. Empowering Women in Imaging Informatics: Confronting Imposter Syndrome, Addressing Microaggressions, and Striving for Work-Life Harmony. Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification. Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images. A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1