Niveen Huseen , Zaher M.A. Judeh , Ibrahim Abdulhalim
{"title":"掺杂液晶的介孔胆酸盐颗粒作为正常透明的智能窗口","authors":"Niveen Huseen , Zaher M.A. Judeh , Ibrahim Abdulhalim","doi":"10.1016/j.micromeso.2024.113296","DOIUrl":null,"url":null,"abstract":"<div><p>A composite layer of homogeneously aligned liquid crystal (LC) doped with nano or mesoporous microparticles (NMPs) has been shown to act as normally opaque smart window (SW) in what is called NMP-LC mode. The porosity of the particle plays two important roles: (i) When the LC infiltrates the particle, it brings its refractive index to be closer to that of its LC surrounding at a certain orientation of the LC molecules and creates a large index mismatch at the orthogonal orientation; (ii) the LC infiltration brings the porous particle density to be closer to the surrounding LC, thus preventing precipitation and floating. Here we demonstrate that LC doped with cochleate cigar-shaped hollow particles and using DMOAP as an alignment layer acts as a normally transparent smart window. Under voltage, the best scenario that explains the polarization-independent scattering is to have the cochleate particles inclined at an angle to balance the dielectric with the elastic forces effectively. The emergence of the scattering mode results from the symbiotic interplay of two distinct phenomena – the NMP effect and the electro-hydrodynamic instability effect. The synergy between these two effects manifests in lower operating voltage and frequency requirements for the device, hence less energy consumption. The scattering increases between 30 °C and 50 °C, thus it acts as a self-adjustable window giving more shade as the outside temperature rises. The threshold voltage is found to decrease with temperature. The SW exhibits high transparency in the OFF state, and high haze in the ON state, and the durability test shows that the SW switches for at least 6 days without degradation of optical contrast.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"379 ","pages":"Article 113296"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoporous chochleate particles doped liquid crystal as normally transparent smart window\",\"authors\":\"Niveen Huseen , Zaher M.A. Judeh , Ibrahim Abdulhalim\",\"doi\":\"10.1016/j.micromeso.2024.113296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A composite layer of homogeneously aligned liquid crystal (LC) doped with nano or mesoporous microparticles (NMPs) has been shown to act as normally opaque smart window (SW) in what is called NMP-LC mode. The porosity of the particle plays two important roles: (i) When the LC infiltrates the particle, it brings its refractive index to be closer to that of its LC surrounding at a certain orientation of the LC molecules and creates a large index mismatch at the orthogonal orientation; (ii) the LC infiltration brings the porous particle density to be closer to the surrounding LC, thus preventing precipitation and floating. Here we demonstrate that LC doped with cochleate cigar-shaped hollow particles and using DMOAP as an alignment layer acts as a normally transparent smart window. Under voltage, the best scenario that explains the polarization-independent scattering is to have the cochleate particles inclined at an angle to balance the dielectric with the elastic forces effectively. The emergence of the scattering mode results from the symbiotic interplay of two distinct phenomena – the NMP effect and the electro-hydrodynamic instability effect. The synergy between these two effects manifests in lower operating voltage and frequency requirements for the device, hence less energy consumption. The scattering increases between 30 °C and 50 °C, thus it acts as a self-adjustable window giving more shade as the outside temperature rises. The threshold voltage is found to decrease with temperature. The SW exhibits high transparency in the OFF state, and high haze in the ON state, and the durability test shows that the SW switches for at least 6 days without degradation of optical contrast.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"379 \",\"pages\":\"Article 113296\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003184\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003184","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A composite layer of homogeneously aligned liquid crystal (LC) doped with nano or mesoporous microparticles (NMPs) has been shown to act as normally opaque smart window (SW) in what is called NMP-LC mode. The porosity of the particle plays two important roles: (i) When the LC infiltrates the particle, it brings its refractive index to be closer to that of its LC surrounding at a certain orientation of the LC molecules and creates a large index mismatch at the orthogonal orientation; (ii) the LC infiltration brings the porous particle density to be closer to the surrounding LC, thus preventing precipitation and floating. Here we demonstrate that LC doped with cochleate cigar-shaped hollow particles and using DMOAP as an alignment layer acts as a normally transparent smart window. Under voltage, the best scenario that explains the polarization-independent scattering is to have the cochleate particles inclined at an angle to balance the dielectric with the elastic forces effectively. The emergence of the scattering mode results from the symbiotic interplay of two distinct phenomena – the NMP effect and the electro-hydrodynamic instability effect. The synergy between these two effects manifests in lower operating voltage and frequency requirements for the device, hence less energy consumption. The scattering increases between 30 °C and 50 °C, thus it acts as a self-adjustable window giving more shade as the outside temperature rises. The threshold voltage is found to decrease with temperature. The SW exhibits high transparency in the OFF state, and high haze in the ON state, and the durability test shows that the SW switches for at least 6 days without degradation of optical contrast.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.