Junqing Tang , Jing Wang , Jiaying Li , Pengjun Zhao , Wei Lyu , Wei Zhai , Li Yuan , Li Wan , Chenyu Yang
{"title":"预测应对极端城市洪水的人员流动:考虑空间异质性的混合深度学习模型","authors":"Junqing Tang , Jing Wang , Jiaying Li , Pengjun Zhao , Wei Lyu , Wei Zhai , Li Yuan , Li Wan , Chenyu Yang","doi":"10.1016/j.compenvurbsys.2024.102160","DOIUrl":null,"url":null,"abstract":"<div><p>Resilient post-disaster recovery is crucial for the long-term sustainable development of modern cities, and in this regard, predicting the unusual flows of human mobility when disasters hit, could offer insights into how emergency responses could be managed to cope with such unexpected shocks more efficiently. For years, many studies have been dedicated to developing various models to predict human movement; however, abnormal human flows caused by large-scale urban disasters, such as urban floods, remain difficult to capture accurately using existing models. In this paper, we propose a spatiotemporal hybrid deep learning model based on a graph convolutional network and long short-term memory with a spatial heterogeneity component. Using 1.32 billion movement records from smartphone users, we applied the model to predict total hourly flows of human mobility in the “7.20” extreme urban flood in Zhengzhou, China. We found that the proposed model can significantly improve the prediction accuracy (i.e., <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> from 0.887 to 0.951) for during-disaster flows while maintaining high accuracy for before- and after-disaster flows. We also show that our model outperforms selected mainstream machine learning models in every disaster stage in a set of sensitivity tests, which verifies not only its better performance for predicting both usual and unusual flows but also its robustness. The results underscore the effective role of spatial heterogeneity in predicting human mobility flow in a disaster context. This study offers a novel tool for better depicting human mobility under the impact of urban floods and provides useful insights for decision-makers managing how people move in large-scale disaster emergencies.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"113 ","pages":"Article 102160"},"PeriodicalIF":7.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting human mobility flows in response to extreme urban floods: A hybrid deep learning model considering spatial heterogeneity\",\"authors\":\"Junqing Tang , Jing Wang , Jiaying Li , Pengjun Zhao , Wei Lyu , Wei Zhai , Li Yuan , Li Wan , Chenyu Yang\",\"doi\":\"10.1016/j.compenvurbsys.2024.102160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resilient post-disaster recovery is crucial for the long-term sustainable development of modern cities, and in this regard, predicting the unusual flows of human mobility when disasters hit, could offer insights into how emergency responses could be managed to cope with such unexpected shocks more efficiently. For years, many studies have been dedicated to developing various models to predict human movement; however, abnormal human flows caused by large-scale urban disasters, such as urban floods, remain difficult to capture accurately using existing models. In this paper, we propose a spatiotemporal hybrid deep learning model based on a graph convolutional network and long short-term memory with a spatial heterogeneity component. Using 1.32 billion movement records from smartphone users, we applied the model to predict total hourly flows of human mobility in the “7.20” extreme urban flood in Zhengzhou, China. We found that the proposed model can significantly improve the prediction accuracy (i.e., <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> from 0.887 to 0.951) for during-disaster flows while maintaining high accuracy for before- and after-disaster flows. We also show that our model outperforms selected mainstream machine learning models in every disaster stage in a set of sensitivity tests, which verifies not only its better performance for predicting both usual and unusual flows but also its robustness. The results underscore the effective role of spatial heterogeneity in predicting human mobility flow in a disaster context. This study offers a novel tool for better depicting human mobility under the impact of urban floods and provides useful insights for decision-makers managing how people move in large-scale disaster emergencies.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"113 \",\"pages\":\"Article 102160\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000899\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000899","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Predicting human mobility flows in response to extreme urban floods: A hybrid deep learning model considering spatial heterogeneity
Resilient post-disaster recovery is crucial for the long-term sustainable development of modern cities, and in this regard, predicting the unusual flows of human mobility when disasters hit, could offer insights into how emergency responses could be managed to cope with such unexpected shocks more efficiently. For years, many studies have been dedicated to developing various models to predict human movement; however, abnormal human flows caused by large-scale urban disasters, such as urban floods, remain difficult to capture accurately using existing models. In this paper, we propose a spatiotemporal hybrid deep learning model based on a graph convolutional network and long short-term memory with a spatial heterogeneity component. Using 1.32 billion movement records from smartphone users, we applied the model to predict total hourly flows of human mobility in the “7.20” extreme urban flood in Zhengzhou, China. We found that the proposed model can significantly improve the prediction accuracy (i.e., from 0.887 to 0.951) for during-disaster flows while maintaining high accuracy for before- and after-disaster flows. We also show that our model outperforms selected mainstream machine learning models in every disaster stage in a set of sensitivity tests, which verifies not only its better performance for predicting both usual and unusual flows but also its robustness. The results underscore the effective role of spatial heterogeneity in predicting human mobility flow in a disaster context. This study offers a novel tool for better depicting human mobility under the impact of urban floods and provides useful insights for decision-makers managing how people move in large-scale disaster emergencies.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.