{"title":"智能移动机器人的认知导航:基于拓扑记忆配置的学习方法","authors":"Qiming Liu;Xinru Cui;Zhe Liu;Hesheng Wang","doi":"10.1109/JAS.2024.124332","DOIUrl":null,"url":null,"abstract":"Autonomous navigation for intelligent mobile robots has gained significant attention, with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory. In this paper, we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations. We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation. This tackles the issues of topological node redundancy and incorrect edge connections, which stem from the distribution gap between the spatial and perceptual domains. Furthermore, we propose a differentiable graph extraction structure, the topology multi-factor transformer (TMFT). This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation. Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures. Comprehensive validation through behavior visualization, interpretability tests, and real-world deployment further underscore the adaptability and efficacy of our method.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 9","pages":"1933-1943"},"PeriodicalIF":15.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive Navigation for Intelligent Mobile Robots: A Learning-Based Approach with Topological Memory Configuration\",\"authors\":\"Qiming Liu;Xinru Cui;Zhe Liu;Hesheng Wang\",\"doi\":\"10.1109/JAS.2024.124332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous navigation for intelligent mobile robots has gained significant attention, with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory. In this paper, we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations. We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation. This tackles the issues of topological node redundancy and incorrect edge connections, which stem from the distribution gap between the spatial and perceptual domains. Furthermore, we propose a differentiable graph extraction structure, the topology multi-factor transformer (TMFT). This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation. Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures. Comprehensive validation through behavior visualization, interpretability tests, and real-world deployment further underscore the adaptability and efficacy of our method.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 9\",\"pages\":\"1933-1943\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10551318/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10551318/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Cognitive Navigation for Intelligent Mobile Robots: A Learning-Based Approach with Topological Memory Configuration
Autonomous navigation for intelligent mobile robots has gained significant attention, with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory. In this paper, we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations. We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation. This tackles the issues of topological node redundancy and incorrect edge connections, which stem from the distribution gap between the spatial and perceptual domains. Furthermore, we propose a differentiable graph extraction structure, the topology multi-factor transformer (TMFT). This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation. Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures. Comprehensive validation through behavior visualization, interpretability tests, and real-world deployment further underscore the adaptability and efficacy of our method.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.