城市级交通网格信号控制的区域多代理合作强化学习

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Ieee-Caa Journal of Automatica Sinica Pub Date : 2024-08-15 DOI:10.1109/JAS.2024.124365
Yisha Li;Ya Zhang;Xinde Li;Changyin Sun
{"title":"城市级交通网格信号控制的区域多代理合作强化学习","authors":"Yisha Li;Ya Zhang;Xinde Li;Changyin Sun","doi":"10.1109/JAS.2024.124365","DOIUrl":null,"url":null,"abstract":"This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system. A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency. Firstly a regional multi-agent Q-learning framework is proposed, which can equivalently decompose the global Q value of the traffic system into the local values of several regions. Based on the framework and the idea of human-machine cooperation, a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to real-time traffic flow densities. In order to achieve better cooperation inside each region, a lightweight spatio-temporal fusion feature extraction network is designed. The experiments in synthetic, real-world and city-level scenarios show that the proposed RegionSTLight converges more quickly, is more stable, and obtains better asymptotic performance compared to state-of-the-art models.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 9","pages":"1987-1998"},"PeriodicalIF":15.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control\",\"authors\":\"Yisha Li;Ya Zhang;Xinde Li;Changyin Sun\",\"doi\":\"10.1109/JAS.2024.124365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system. A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency. Firstly a regional multi-agent Q-learning framework is proposed, which can equivalently decompose the global Q value of the traffic system into the local values of several regions. Based on the framework and the idea of human-machine cooperation, a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to real-time traffic flow densities. In order to achieve better cooperation inside each region, a lightweight spatio-temporal fusion feature extraction network is designed. The experiments in synthetic, real-world and city-level scenarios show that the proposed RegionSTLight converges more quickly, is more stable, and obtains better asymptotic performance compared to state-of-the-art models.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 9\",\"pages\":\"1987-1998\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10637352/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10637352/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了城市级交通系统中多个交叉口的有效交通信号控制问题。提出了一种名为 RegionSTLight 的新型区域多代理合作强化学习算法,以提高交通效率。首先提出了一个区域多代理 Q 值学习框架,该框架可将交通系统的全局 Q 值等价分解为多个区域的局部 Q 值。基于该框架和人机合作思想,设计了一种动态分区方法,根据实时交通流密度将交通网络划分为若干强耦合区域。为了在每个区域内实现更好的合作,设计了一个轻量级时空融合特征提取网络。在合成、真实世界和城市级场景中的实验表明,与最先进的模型相比,所提出的 RegionSTLight 收敛更快、更稳定,并获得了更好的渐近性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system. A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency. Firstly a regional multi-agent Q-learning framework is proposed, which can equivalently decompose the global Q value of the traffic system into the local values of several regions. Based on the framework and the idea of human-machine cooperation, a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to real-time traffic flow densities. In order to achieve better cooperation inside each region, a lightweight spatio-temporal fusion feature extraction network is designed. The experiments in synthetic, real-world and city-level scenarios show that the proposed RegionSTLight converges more quickly, is more stable, and obtains better asymptotic performance compared to state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
期刊最新文献
Inside front cover Inside back cover Back cover Front cover On Zero Dynamics and Controllable Cyber-Attacks in Cyber-Physical Systems and Dynamic Coding Schemes as Their Countermeasures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1