标题还是标签?社交媒体对股市投资者情绪的争夺战

Yudhvir Seetharam, Kingstone Nyakurukwa
{"title":"标题还是标签?社交媒体对股市投资者情绪的争夺战","authors":"Yudhvir Seetharam,&nbsp;Kingstone Nyakurukwa","doi":"10.1016/j.jjimei.2024.100273","DOIUrl":null,"url":null,"abstract":"<div><p>This study tackles the complex task of measuring investor sentiment, a latent variable often measured through various proxies. The focus here is on textual sentiment extracted from online sources, specifically news media and social media sentiment. The central inquiry is whether these proxies are equivalent indicators of investor sentiment. Employing firm-level daily sentiment scores for DJIA stocks and leveraging Granger causality and transfer entropy, the research investigates the dynamics of information flow between these proxies. The findings show a prevailing pattern: information predominantly flows from social media to news for the majority of stocks while a reverse relationship is established for some stocks. The variations across stocks suggest that these proxies do not uniformly capture the same underlying phenomena. The study shows the significant role of social media in shaping news media sentiment and prompts considerations about regulating social media platforms in the context of their impact on financial markets.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100273"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667096824000624/pdfft?md5=44b9d1643960f774f31b7f5227e535ca&pid=1-s2.0-S2667096824000624-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Headlines or Hashtags? The battle in social media for investor sentiment in the stock market\",\"authors\":\"Yudhvir Seetharam,&nbsp;Kingstone Nyakurukwa\",\"doi\":\"10.1016/j.jjimei.2024.100273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study tackles the complex task of measuring investor sentiment, a latent variable often measured through various proxies. The focus here is on textual sentiment extracted from online sources, specifically news media and social media sentiment. The central inquiry is whether these proxies are equivalent indicators of investor sentiment. Employing firm-level daily sentiment scores for DJIA stocks and leveraging Granger causality and transfer entropy, the research investigates the dynamics of information flow between these proxies. The findings show a prevailing pattern: information predominantly flows from social media to news for the majority of stocks while a reverse relationship is established for some stocks. The variations across stocks suggest that these proxies do not uniformly capture the same underlying phenomena. The study shows the significant role of social media in shaping news media sentiment and prompts considerations about regulating social media platforms in the context of their impact on financial markets.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100273\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000624/pdfft?md5=44b9d1643960f774f31b7f5227e535ca&pid=1-s2.0-S2667096824000624-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

投资者情绪是一个潜变量,通常通过各种代用指标来衡量。本研究的重点是从网络资源中提取的文本情绪,特别是从新闻媒体和社交媒体情绪中提取的文本情绪。核心问题是这些代用指标是否等同于投资者情绪指标。研究采用道琼斯工业平均指数股票的公司级每日情绪得分,并利用格兰杰因果关系和转移熵,研究了这些代用指标之间的信息流动态。研究结果显示了一种普遍的模式:对于大多数股票来说,信息主要是从社交媒体流向新闻,而对于某些股票来说,则是一种反向关系。不同股票之间的差异表明,这些代用指标并没有一致地捕捉到相同的基本现象。这项研究表明,社交媒体在影响新闻媒体情绪方面发挥着重要作用,并促使人们考虑在社交媒体平台对金融市场产生影响的背景下对其进行监管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Headlines or Hashtags? The battle in social media for investor sentiment in the stock market

This study tackles the complex task of measuring investor sentiment, a latent variable often measured through various proxies. The focus here is on textual sentiment extracted from online sources, specifically news media and social media sentiment. The central inquiry is whether these proxies are equivalent indicators of investor sentiment. Employing firm-level daily sentiment scores for DJIA stocks and leveraging Granger causality and transfer entropy, the research investigates the dynamics of information flow between these proxies. The findings show a prevailing pattern: information predominantly flows from social media to news for the majority of stocks while a reverse relationship is established for some stocks. The variations across stocks suggest that these proxies do not uniformly capture the same underlying phenomena. The study shows the significant role of social media in shaping news media sentiment and prompts considerations about regulating social media platforms in the context of their impact on financial markets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1