{"title":"弹性材料的大变形粘弹性理论及其在开源有限元程序 FEniCSx 中的数值实现","authors":"Eric M. Stewart, Lallit Anand","doi":"10.1016/j.ijsolstr.2024.113023","DOIUrl":null,"url":null,"abstract":"<div><p>Elastomeric solid materials typically exhibit a pronounced viscoelastic response. In this paper we consider a large deformation viscoelasticity theory for isotropic elastomeric materials which uses a multi-branch multiplicative decomposition of the deformation gradient. We then describe the numerical implementation of the theory in the open-source finite element program FEniCSx. Several example simulations which demonstrate the capability of the theory and its numerical implementation to model stress-relaxation, creep, stretch-rate sensitivity, hysteresis, damped inertial oscillations, and dynamic column buckling are shown. The source codes for these simulations are provided. The theory and the codes presented in this paper lay the foundation for future extensions of the theory and its numerical implementation to include the effects of coupling with thermal, electrical, and magnetic fields — extensions which are of central importance in modeling the response of soft-active materials.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"303 ","pages":"Article 113023"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A large deformation viscoelasticity theory for elastomeric materials and its numerical implementation in the open-source finite element program FEniCSx\",\"authors\":\"Eric M. Stewart, Lallit Anand\",\"doi\":\"10.1016/j.ijsolstr.2024.113023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elastomeric solid materials typically exhibit a pronounced viscoelastic response. In this paper we consider a large deformation viscoelasticity theory for isotropic elastomeric materials which uses a multi-branch multiplicative decomposition of the deformation gradient. We then describe the numerical implementation of the theory in the open-source finite element program FEniCSx. Several example simulations which demonstrate the capability of the theory and its numerical implementation to model stress-relaxation, creep, stretch-rate sensitivity, hysteresis, damped inertial oscillations, and dynamic column buckling are shown. The source codes for these simulations are provided. The theory and the codes presented in this paper lay the foundation for future extensions of the theory and its numerical implementation to include the effects of coupling with thermal, electrical, and magnetic fields — extensions which are of central importance in modeling the response of soft-active materials.</p></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"303 \",\"pages\":\"Article 113023\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324003822\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003822","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
A large deformation viscoelasticity theory for elastomeric materials and its numerical implementation in the open-source finite element program FEniCSx
Elastomeric solid materials typically exhibit a pronounced viscoelastic response. In this paper we consider a large deformation viscoelasticity theory for isotropic elastomeric materials which uses a multi-branch multiplicative decomposition of the deformation gradient. We then describe the numerical implementation of the theory in the open-source finite element program FEniCSx. Several example simulations which demonstrate the capability of the theory and its numerical implementation to model stress-relaxation, creep, stretch-rate sensitivity, hysteresis, damped inertial oscillations, and dynamic column buckling are shown. The source codes for these simulations are provided. The theory and the codes presented in this paper lay the foundation for future extensions of the theory and its numerical implementation to include the effects of coupling with thermal, electrical, and magnetic fields — extensions which are of central importance in modeling the response of soft-active materials.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.