{"title":"气泡在固体表面上的运动行为","authors":"Jing Wang , Zhiguang Guo , Feiyan Fu","doi":"10.1016/j.cis.2024.103266","DOIUrl":null,"url":null,"abstract":"<div><p>Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103266"},"PeriodicalIF":15.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locomotion behavior of air bubbles on solid surfaces\",\"authors\":\"Jing Wang , Zhiguang Guo , Feiyan Fu\",\"doi\":\"10.1016/j.cis.2024.103266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.</p></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"332 \",\"pages\":\"Article 103266\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624001891\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001891","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Locomotion behavior of air bubbles on solid surfaces
Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.