连续流电池在环境条件下通过水氧化进行电催化氮还原:有望用于氨或重氮?

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2024-08-13 DOI:10.1016/j.elecom.2024.107794
Susanta Bera , Rutger van der Breggen , Pramod Patil Kunturu, Stefan Welzel, Mihalis N. Tsampas
{"title":"连续流电池在环境条件下通过水氧化进行电催化氮还原:有望用于氨或重氮?","authors":"Susanta Bera ,&nbsp;Rutger van der Breggen ,&nbsp;Pramod Patil Kunturu,&nbsp;Stefan Welzel,&nbsp;Mihalis N. Tsampas","doi":"10.1016/j.elecom.2024.107794","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical nitrogen reduction reaction (eNRR) is recognized as an alternative green approach to the traditional energy-demanding and fossil-based catalytic processes (e.g. Haber Bosch). In this study, we implement eNRR in a proton exchange membrane (PEM) water electrolyzer in which nitrogen (N<sub>2</sub>) is fed in the cathode. This operation mode has been suggested as a way to overcome mass transfer limitations, however, there is a lack of developed evaluation protocols for appropriate product identification. Herein, we exemplify the spirit of the evaluation protocols for gas phase operation at the device level with a combination of online product analysis and isotopic labeling. Our protocol involves control experiments by replacing the cathodic N<sub>2</sub> feed with (i) inert gas (i.e. Ar) and (ii) isotopic labeled <sup>15</sup>N<sub>2</sub> and by replacing the anodic water feed with isotopic labeled D<sub>2</sub>O. Taking advantage of the gas phase operation in the cathode product analysis is realized with online techniques i.e. quadrupole mass-spectrometer (QMS) and Fourier transform infrared (FTIR) spectrometer. This allows us to verify the production of diazene (N<sub>2</sub>H<sub>2</sub>) resulted from genuine N<sub>2</sub> reduction, rather than from nitrogen-containing contaminants. Our methodology provides a pathway for how the false positive results can be eliminated in the gas phase study and a platform for follow-up studies using promising or exotic catalysts in the cathode, especially to validate the eNRR products or discover more products.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107794"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001371/pdfft?md5=911aed3ca326b99090808ff73df865b1&pid=1-s2.0-S1388248124001371-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic nitrogen reduction in continuous-flow cell via water oxidation at ambient conditions: Promising for ammonia or diazene?\",\"authors\":\"Susanta Bera ,&nbsp;Rutger van der Breggen ,&nbsp;Pramod Patil Kunturu,&nbsp;Stefan Welzel,&nbsp;Mihalis N. Tsampas\",\"doi\":\"10.1016/j.elecom.2024.107794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical nitrogen reduction reaction (eNRR) is recognized as an alternative green approach to the traditional energy-demanding and fossil-based catalytic processes (e.g. Haber Bosch). In this study, we implement eNRR in a proton exchange membrane (PEM) water electrolyzer in which nitrogen (N<sub>2</sub>) is fed in the cathode. This operation mode has been suggested as a way to overcome mass transfer limitations, however, there is a lack of developed evaluation protocols for appropriate product identification. Herein, we exemplify the spirit of the evaluation protocols for gas phase operation at the device level with a combination of online product analysis and isotopic labeling. Our protocol involves control experiments by replacing the cathodic N<sub>2</sub> feed with (i) inert gas (i.e. Ar) and (ii) isotopic labeled <sup>15</sup>N<sub>2</sub> and by replacing the anodic water feed with isotopic labeled D<sub>2</sub>O. Taking advantage of the gas phase operation in the cathode product analysis is realized with online techniques i.e. quadrupole mass-spectrometer (QMS) and Fourier transform infrared (FTIR) spectrometer. This allows us to verify the production of diazene (N<sub>2</sub>H<sub>2</sub>) resulted from genuine N<sub>2</sub> reduction, rather than from nitrogen-containing contaminants. Our methodology provides a pathway for how the false positive results can be eliminated in the gas phase study and a platform for follow-up studies using promising or exotic catalysts in the cathode, especially to validate the eNRR products or discover more products.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"166 \",\"pages\":\"Article 107794\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001371/pdfft?md5=911aed3ca326b99090808ff73df865b1&pid=1-s2.0-S1388248124001371-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001371\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001371","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

电化学氮还原反应(eNRR)被认为是传统高能耗化石催化过程(如哈伯-博世)的替代性绿色方法。在本研究中,我们在质子交换膜(PEM)水电解槽中实施了 eNRR,在阴极中加入氮气(N2)。这种运行模式被认为是克服传质限制的一种方法,但目前还缺乏用于适当产品识别的评估协议。在此,我们将结合在线产品分析和同位素标记,在设备层面体现气相操作评估协议的精神。我们的方案包括用 (i) 惰性气体(即 Ar)和 (ii) 同位素标记的 15N2 取代阴极 N2 供料,以及用同位素标记的 D2O 取代阳极水供料的控制实验。利用阴极气相操作的优势,通过在线技术,即四极质谱仪(QMS)和傅立叶变换红外光谱仪(FTIR),实现了产品分析。这使我们能够验证重氮(N2H2)的产生是真正的 N2 还原,而不是含氮污染物。我们的方法为如何消除气相研究中的假阳性结果提供了一种途径,也为在阴极中使用有前景或特殊催化剂的后续研究提供了一个平台,特别是为了验证 eNRR 产品或发现更多产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrocatalytic nitrogen reduction in continuous-flow cell via water oxidation at ambient conditions: Promising for ammonia or diazene?

Electrochemical nitrogen reduction reaction (eNRR) is recognized as an alternative green approach to the traditional energy-demanding and fossil-based catalytic processes (e.g. Haber Bosch). In this study, we implement eNRR in a proton exchange membrane (PEM) water electrolyzer in which nitrogen (N2) is fed in the cathode. This operation mode has been suggested as a way to overcome mass transfer limitations, however, there is a lack of developed evaluation protocols for appropriate product identification. Herein, we exemplify the spirit of the evaluation protocols for gas phase operation at the device level with a combination of online product analysis and isotopic labeling. Our protocol involves control experiments by replacing the cathodic N2 feed with (i) inert gas (i.e. Ar) and (ii) isotopic labeled 15N2 and by replacing the anodic water feed with isotopic labeled D2O. Taking advantage of the gas phase operation in the cathode product analysis is realized with online techniques i.e. quadrupole mass-spectrometer (QMS) and Fourier transform infrared (FTIR) spectrometer. This allows us to verify the production of diazene (N2H2) resulted from genuine N2 reduction, rather than from nitrogen-containing contaminants. Our methodology provides a pathway for how the false positive results can be eliminated in the gas phase study and a platform for follow-up studies using promising or exotic catalysts in the cathode, especially to validate the eNRR products or discover more products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1