Mengming Xia , Shunjun Ma , Ying Wang , Dizhong Chen , Lai Jiang , Congcong Wen , Guangliang Wu , Xianqin Wang
{"title":"一种创新的 UPLC-MS/MS 方法用于大鼠血浆中 eupafolin 的定量和药代动力学分析","authors":"Mengming Xia , Shunjun Ma , Ying Wang , Dizhong Chen , Lai Jiang , Congcong Wen , Guangliang Wu , Xianqin Wang","doi":"10.1016/j.jchromb.2024.124272","DOIUrl":null,"url":null,"abstract":"<div><p>In this experiment, a rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was established and validated for the quantitation and pharmacokinetic analysis of eupafolin in rat plasma, utilizing licochalcone B as internal standard (IS). After liquid–liquid extraction of the analyte samples by ethyl acetate, chromatographic separation was achieved using a UPLC HSS T3 column under gradient elution conditions, with the mobile phase consisting of acetonitrile and water (with 0.1 % formic acid). Eupafolin was quantified by multiple reaction monitoring (MRM) in electrospray positive-ion mode (ESI+), employing the mass transition <em>m</em>/<em>z</em> 315.2 → 300.3 for eupafolin and <em>m</em>/<em>z</em> 285.4 → 270.3 for IS. Eupafolin demonstrated excellent linear relationship (r > 0.99) over the concentration range of 1.25–1250 ng/mL, with the lower limit of quantification (LLOQ) of the UPLC-MS/MS assay determined as 1.25 ng/mL. Method validation followed the bioanalytical method validation criteria outlined by the FDA. The accuracy of eupafolin ranged from 86.7 % to 111.2 %, and the precision was less than 12 %. The matrix effect was observed at 92.8 %-98.6 %, while the recoveries exceeded 83.2 %. The established UPLC-MS/MS assay was successfully employed for the pharmacokinetic evaluation of eupafolin in rats. The half-lives (t<sub>1/2z</sub>) were determined to be 1.4 ± 0.4 h and 2.5 ± 1.4 h for intravenous and oral administration, respectively. Notably, the bioavailability of eupafolin was relatively low (8.3 %). The optimized UPLC-MS/MS technology showed highly sensitive, selective, and effective, rendering it suitable for the pharmacokinetics of eupafolin in preclinical practice.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1245 ","pages":"Article 124272"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative UPLC-MS/MS method for the quantitation and pharmacokinetics of eupafolin in rat plasma\",\"authors\":\"Mengming Xia , Shunjun Ma , Ying Wang , Dizhong Chen , Lai Jiang , Congcong Wen , Guangliang Wu , Xianqin Wang\",\"doi\":\"10.1016/j.jchromb.2024.124272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this experiment, a rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was established and validated for the quantitation and pharmacokinetic analysis of eupafolin in rat plasma, utilizing licochalcone B as internal standard (IS). After liquid–liquid extraction of the analyte samples by ethyl acetate, chromatographic separation was achieved using a UPLC HSS T3 column under gradient elution conditions, with the mobile phase consisting of acetonitrile and water (with 0.1 % formic acid). Eupafolin was quantified by multiple reaction monitoring (MRM) in electrospray positive-ion mode (ESI+), employing the mass transition <em>m</em>/<em>z</em> 315.2 → 300.3 for eupafolin and <em>m</em>/<em>z</em> 285.4 → 270.3 for IS. Eupafolin demonstrated excellent linear relationship (r > 0.99) over the concentration range of 1.25–1250 ng/mL, with the lower limit of quantification (LLOQ) of the UPLC-MS/MS assay determined as 1.25 ng/mL. Method validation followed the bioanalytical method validation criteria outlined by the FDA. The accuracy of eupafolin ranged from 86.7 % to 111.2 %, and the precision was less than 12 %. The matrix effect was observed at 92.8 %-98.6 %, while the recoveries exceeded 83.2 %. The established UPLC-MS/MS assay was successfully employed for the pharmacokinetic evaluation of eupafolin in rats. The half-lives (t<sub>1/2z</sub>) were determined to be 1.4 ± 0.4 h and 2.5 ± 1.4 h for intravenous and oral administration, respectively. Notably, the bioavailability of eupafolin was relatively low (8.3 %). The optimized UPLC-MS/MS technology showed highly sensitive, selective, and effective, rendering it suitable for the pharmacokinetics of eupafolin in preclinical practice.</p></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1245 \",\"pages\":\"Article 124272\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023224002812\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224002812","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An innovative UPLC-MS/MS method for the quantitation and pharmacokinetics of eupafolin in rat plasma
In this experiment, a rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was established and validated for the quantitation and pharmacokinetic analysis of eupafolin in rat plasma, utilizing licochalcone B as internal standard (IS). After liquid–liquid extraction of the analyte samples by ethyl acetate, chromatographic separation was achieved using a UPLC HSS T3 column under gradient elution conditions, with the mobile phase consisting of acetonitrile and water (with 0.1 % formic acid). Eupafolin was quantified by multiple reaction monitoring (MRM) in electrospray positive-ion mode (ESI+), employing the mass transition m/z 315.2 → 300.3 for eupafolin and m/z 285.4 → 270.3 for IS. Eupafolin demonstrated excellent linear relationship (r > 0.99) over the concentration range of 1.25–1250 ng/mL, with the lower limit of quantification (LLOQ) of the UPLC-MS/MS assay determined as 1.25 ng/mL. Method validation followed the bioanalytical method validation criteria outlined by the FDA. The accuracy of eupafolin ranged from 86.7 % to 111.2 %, and the precision was less than 12 %. The matrix effect was observed at 92.8 %-98.6 %, while the recoveries exceeded 83.2 %. The established UPLC-MS/MS assay was successfully employed for the pharmacokinetic evaluation of eupafolin in rats. The half-lives (t1/2z) were determined to be 1.4 ± 0.4 h and 2.5 ± 1.4 h for intravenous and oral administration, respectively. Notably, the bioavailability of eupafolin was relatively low (8.3 %). The optimized UPLC-MS/MS technology showed highly sensitive, selective, and effective, rendering it suitable for the pharmacokinetics of eupafolin in preclinical practice.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.