重新审视豆科凝集素:结构组织和碳水化合物结合特性

IF 2.4 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Carbohydrate Research Pub Date : 2024-08-13 DOI:10.1016/j.carres.2024.109241
Vinicius J.S. Osterne, Gilles De Sloover, Els J.M. Van Damme
{"title":"重新审视豆科凝集素:结构组织和碳水化合物结合特性","authors":"Vinicius J.S. Osterne,&nbsp;Gilles De Sloover,&nbsp;Els J.M. Van Damme","doi":"10.1016/j.carres.2024.109241","DOIUrl":null,"url":null,"abstract":"<div><p>Legume lectins are a diverse family of carbohydrate-binding proteins that share significant similarities in their primary, secondary, and tertiary structures, yet exhibit remarkable variability in their quaternary structures and carbohydrate-binding specificities. The tertiary structure of legume lectins, characterized by a conserved β-sandwich fold, provides the scaffold for the formation of a carbohydrate-recognition domain (CRD) responsible for ligand binding. The structural basis for the binding is similar between members of the family, with key residues interacting with the sugar through hydrogen bonds, hydrophobic interactions, and van der Waals forces. Variability in substructures and residues within the CRD are responsible for the large array of specificities and enable legume lectins to recognize diverse sugar structures, while maintaining a consistent structural fold. Therefore, legume lectins can be classified into several specificity groups based on their preferred ligands, including mannose/glucose-specific, N-acetyl-<span>d</span>-galactosamine/galactose-specific, N-acetyl-<span>d</span>-glucosamine-specific, <span>l</span>-fucose-specific, and α-2,3 sialic acid-specific lectins. In this context, this review examined the structural aspects and carbohydrate-binding properties of representative legume lectins and their specific ligands in detail. Understanding the structure/binding relationships of lectins continues to provide valuable insights into their biological roles, while also assisting in the potential applications of these proteins in glycobiology, diagnostics, and therapeutics.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"544 ","pages":"Article 109241"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting legume lectins: Structural organization and carbohydrate-binding properties\",\"authors\":\"Vinicius J.S. Osterne,&nbsp;Gilles De Sloover,&nbsp;Els J.M. Van Damme\",\"doi\":\"10.1016/j.carres.2024.109241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Legume lectins are a diverse family of carbohydrate-binding proteins that share significant similarities in their primary, secondary, and tertiary structures, yet exhibit remarkable variability in their quaternary structures and carbohydrate-binding specificities. The tertiary structure of legume lectins, characterized by a conserved β-sandwich fold, provides the scaffold for the formation of a carbohydrate-recognition domain (CRD) responsible for ligand binding. The structural basis for the binding is similar between members of the family, with key residues interacting with the sugar through hydrogen bonds, hydrophobic interactions, and van der Waals forces. Variability in substructures and residues within the CRD are responsible for the large array of specificities and enable legume lectins to recognize diverse sugar structures, while maintaining a consistent structural fold. Therefore, legume lectins can be classified into several specificity groups based on their preferred ligands, including mannose/glucose-specific, N-acetyl-<span>d</span>-galactosamine/galactose-specific, N-acetyl-<span>d</span>-glucosamine-specific, <span>l</span>-fucose-specific, and α-2,3 sialic acid-specific lectins. In this context, this review examined the structural aspects and carbohydrate-binding properties of representative legume lectins and their specific ligands in detail. Understanding the structure/binding relationships of lectins continues to provide valuable insights into their biological roles, while also assisting in the potential applications of these proteins in glycobiology, diagnostics, and therapeutics.</p></div>\",\"PeriodicalId\":9415,\"journal\":{\"name\":\"Carbohydrate Research\",\"volume\":\"544 \",\"pages\":\"Article 109241\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008621524002209\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002209","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

豆科凝集素是一个多样化的碳水化合物结合蛋白家族,它们在一级、二级和三级结构上具有显著的相似性,但在四级结构和碳水化合物结合特异性上却表现出显著的差异性。豆科凝集素的三级结构以保守的 β-三明治折叠为特征,为负责配体结合的碳水化合物识别域(CRD)的形成提供了支架。该家族成员之间的结合结构基础相似,关键残基通过氢键、疏水相互作用和范德华力与糖相互作用。CRD内部的亚结构和残基的变异是造成大量特异性的原因,并使豆科凝集素能够识别不同的糖结构,同时保持结构折叠的一致性。因此,豆科凝集素可根据其首选配体分为几类特异性凝集素,包括甘露糖/葡萄糖特异性凝集素、N-乙酰基-半乳糖胺/半乳糖特异性凝集素、N-乙酰基-半乳糖胺特异性凝集素、l-岩藻糖特异性凝集素和α-2,3 水杨酸特异性凝集素。在此背景下,本综述详细研究了代表性豆科凝集素及其特异配体的结构和碳水化合物结合特性。了解凝集素的结构/结合关系将继续为了解它们的生物学作用提供宝贵的见解,同时也有助于这些蛋白质在糖生物学、诊断学和治疗学中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting legume lectins: Structural organization and carbohydrate-binding properties

Legume lectins are a diverse family of carbohydrate-binding proteins that share significant similarities in their primary, secondary, and tertiary structures, yet exhibit remarkable variability in their quaternary structures and carbohydrate-binding specificities. The tertiary structure of legume lectins, characterized by a conserved β-sandwich fold, provides the scaffold for the formation of a carbohydrate-recognition domain (CRD) responsible for ligand binding. The structural basis for the binding is similar between members of the family, with key residues interacting with the sugar through hydrogen bonds, hydrophobic interactions, and van der Waals forces. Variability in substructures and residues within the CRD are responsible for the large array of specificities and enable legume lectins to recognize diverse sugar structures, while maintaining a consistent structural fold. Therefore, legume lectins can be classified into several specificity groups based on their preferred ligands, including mannose/glucose-specific, N-acetyl-d-galactosamine/galactose-specific, N-acetyl-d-glucosamine-specific, l-fucose-specific, and α-2,3 sialic acid-specific lectins. In this context, this review examined the structural aspects and carbohydrate-binding properties of representative legume lectins and their specific ligands in detail. Understanding the structure/binding relationships of lectins continues to provide valuable insights into their biological roles, while also assisting in the potential applications of these proteins in glycobiology, diagnostics, and therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Research
Carbohydrate Research 化学-生化与分子生物学
CiteScore
5.00
自引率
3.20%
发文量
183
审稿时长
3.6 weeks
期刊介绍: Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects. Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence. Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".
期刊最新文献
A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Recent trends in the separation and analysis of chitooligomers. Synthesis and antioxidant evaluation of coumarin-functionalised chitosan: A potent, non-toxic free radical scavenging compound. Analysing the apoptotic potential of green synthesized Nyctanthes arbor-tristis chitosan nanoparticles in MDA-MB-231 and SKOV3 cell lines. Highly efficient esterification of waxy maize starch in choline chloride/acetic acid acidic deep eutectic solvent system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1