Y. Zhao, J. F. Bell III, E. Sahr, E. Lessac-Chenen, C. Adam, E. Cisneros, A. Winhold, M. Caplinger, M. Ravine, J. Schaffner, J. Shamah, S. Mottola
{"title":"美国国家航空航天局露西号飞行任务中终端跟踪摄像机(TTCams)的飞行前和飞行中校准及性能","authors":"Y. Zhao, J. F. Bell III, E. Sahr, E. Lessac-Chenen, C. Adam, E. Cisneros, A. Winhold, M. Caplinger, M. Ravine, J. Schaffner, J. Shamah, S. Mottola","doi":"10.1029/2024EA003576","DOIUrl":null,"url":null,"abstract":"<p>The Terminal Tracking Camera (TTCam) imaging system on the NASA Lucy Discovery mission consists of a pair of cameras that are being used mainly as a navigation and target acquisition system for the mission's asteroid encounters. However, a secondary science-focused function of the TTCam system is to provide wide-angle broadband images over a large range of phase angles around close approach during each asteroid flyby. The scientific data acquired by TTCam can be used for shape modeling and topographic and geologic analyses. This paper describes the pre-flight and initial in-flight calibration and characterization of the TTCams, including the development of a radiometric calibration pipeline to convert raw TTCam images into radiance and radiance factor (I/F) images, along with their uncertainties. Details are also provided here on the specific calibration algorithms, the origin and archived location of the required ancillary calibration files, and the archived sources of the raw calibration and flight data used in this analysis.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003576","citationCount":"0","resultStr":"{\"title\":\"Pre-Flight and In-Flight Calibration and Performance of the Terminal Tracking Cameras (TTCams) on the NASA Lucy Mission\",\"authors\":\"Y. Zhao, J. F. Bell III, E. Sahr, E. Lessac-Chenen, C. Adam, E. Cisneros, A. Winhold, M. Caplinger, M. Ravine, J. Schaffner, J. Shamah, S. Mottola\",\"doi\":\"10.1029/2024EA003576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Terminal Tracking Camera (TTCam) imaging system on the NASA Lucy Discovery mission consists of a pair of cameras that are being used mainly as a navigation and target acquisition system for the mission's asteroid encounters. However, a secondary science-focused function of the TTCam system is to provide wide-angle broadband images over a large range of phase angles around close approach during each asteroid flyby. The scientific data acquired by TTCam can be used for shape modeling and topographic and geologic analyses. This paper describes the pre-flight and initial in-flight calibration and characterization of the TTCams, including the development of a radiometric calibration pipeline to convert raw TTCam images into radiance and radiance factor (I/F) images, along with their uncertainties. Details are also provided here on the specific calibration algorithms, the origin and archived location of the required ancillary calibration files, and the archived sources of the raw calibration and flight data used in this analysis.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003576\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003576","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
NASA 露西发现号飞行任务上的终端跟踪相机(TTCam)成像系统由一对相机组成,主要用作飞行任务遭遇小行星时的导航和目标捕获系统。不过,TTCam 系统的一个次要科学功能是在每次飞越小行星过程中提供近距离接近时大相位角范围内的广角宽带图像。TTCam 获得的科学数据可用于形状建模以及地形和地质分析。本文介绍了 TTCam 的飞行前和飞行中的初始校准和特征描述,包括开发一个辐射校准管道,将原始 TTCam 图像转换为辐射和辐射系数 (I/F) 图像,以及它们的不确定性。这里还详细介绍了具体的校准算法、所需辅助校准文件的来源和存档位置,以及本分析中使用的原始校准和飞行数据的存档来源。
Pre-Flight and In-Flight Calibration and Performance of the Terminal Tracking Cameras (TTCams) on the NASA Lucy Mission
The Terminal Tracking Camera (TTCam) imaging system on the NASA Lucy Discovery mission consists of a pair of cameras that are being used mainly as a navigation and target acquisition system for the mission's asteroid encounters. However, a secondary science-focused function of the TTCam system is to provide wide-angle broadband images over a large range of phase angles around close approach during each asteroid flyby. The scientific data acquired by TTCam can be used for shape modeling and topographic and geologic analyses. This paper describes the pre-flight and initial in-flight calibration and characterization of the TTCams, including the development of a radiometric calibration pipeline to convert raw TTCam images into radiance and radiance factor (I/F) images, along with their uncertainties. Details are also provided here on the specific calibration algorithms, the origin and archived location of the required ancillary calibration files, and the archived sources of the raw calibration and flight data used in this analysis.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.