Mateo N. Diaz Appella, Adriana Kolender, Oscar J. Oppezzo, Nancy I. López, Paula M. Tribelli
{"title":"焦褐藻素的结构复杂性影响不同生活方式假单胞菌的紫外线屏蔽能力。","authors":"Mateo N. Diaz Appella, Adriana Kolender, Oscar J. Oppezzo, Nancy I. López, Paula M. Tribelli","doi":"10.1002/1873-3468.15000","DOIUrl":null,"url":null,"abstract":"<p>Pyomelanin, a polymeric pigment in <i>Pseudomonas</i>, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across <i>Pseudomonas</i> using PAO1 and PA14 reference strains carrying mutations in <i>hmgA</i> (a gene involved in pyomelanin synthesis), a melanogenic <i>P. aeruginosa</i> clinical isolate (PAM), and a melanogenic <i>P. extremaustralis</i> (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. <i>P. extremaustralis</i> UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":"598 21","pages":"2702-2716"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles\",\"authors\":\"Mateo N. Diaz Appella, Adriana Kolender, Oscar J. Oppezzo, Nancy I. López, Paula M. Tribelli\",\"doi\":\"10.1002/1873-3468.15000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pyomelanin, a polymeric pigment in <i>Pseudomonas</i>, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across <i>Pseudomonas</i> using PAO1 and PA14 reference strains carrying mutations in <i>hmgA</i> (a gene involved in pyomelanin synthesis), a melanogenic <i>P. aeruginosa</i> clinical isolate (PAM), and a melanogenic <i>P. extremaustralis</i> (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. <i>P. extremaustralis</i> UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\"598 21\",\"pages\":\"2702-2716\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.15000\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.15000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles
Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.