{"title":"敲除 EGR1 可通过激活 PINK1-Parkin 依赖性丝裂抑制核浆细胞衰老和线粒体损伤,从而延缓椎间盘退变","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>Mitophagy plays a crucial role in maintaining the homeostasis of intervertebral disc (IVD). Early Growth Response 1 (EGR1), a conservative transcription factor, is commonly upregulated under oxidative stress conditions and participates in regulating cellular senescence, apoptosis, and inflammatory responses. However, the specific role of EGR1 in nucleus pulposus (NP) cell senescence and mitophagy remains unclear. In this study, through bioinformatics analysis and validation using human tissue specimens, we found that EGR1 is significantly upregulated in IVD degeneration (IDD). Further experimental results demonstrate that knockdown of EGR1 inhibits TBHP-induced NP cell senescence and mitochondrial dysfunction while promoting the activation of mitophagy. The protective effect of EGR1 knockdown on NP cell senescence and mitochondrion disappears upon inhibition of mitophagy with mdivi1. Mechanistic studies reveal that EGR1 suppresses NP cell senescence and mitochondrial dysfunction by modulating the PINK1-Parkin dependent mitophagy pathway. Additionally, EGR1 knockdown delays acupuncture-induced IDD in rats. In conclusion, our study demonstrates that under TBHP-induced oxidative stress, EGR1 knockdown mitigates NP cell senescence and mitochondrial dysfunction through the PINK1-Parkin dependent mitophagy pathway, thereby alleviating IDD.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knocking down EGR1 inhibits nucleus pulposus cell senescence and mitochondrial damage through activation of PINK1-Parkin dependent mitophagy, thereby delaying intervertebral disc degeneration\",\"authors\":\"\",\"doi\":\"10.1016/j.freeradbiomed.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitophagy plays a crucial role in maintaining the homeostasis of intervertebral disc (IVD). Early Growth Response 1 (EGR1), a conservative transcription factor, is commonly upregulated under oxidative stress conditions and participates in regulating cellular senescence, apoptosis, and inflammatory responses. However, the specific role of EGR1 in nucleus pulposus (NP) cell senescence and mitophagy remains unclear. In this study, through bioinformatics analysis and validation using human tissue specimens, we found that EGR1 is significantly upregulated in IVD degeneration (IDD). Further experimental results demonstrate that knockdown of EGR1 inhibits TBHP-induced NP cell senescence and mitochondrial dysfunction while promoting the activation of mitophagy. The protective effect of EGR1 knockdown on NP cell senescence and mitochondrion disappears upon inhibition of mitophagy with mdivi1. Mechanistic studies reveal that EGR1 suppresses NP cell senescence and mitochondrial dysfunction by modulating the PINK1-Parkin dependent mitophagy pathway. Additionally, EGR1 knockdown delays acupuncture-induced IDD in rats. In conclusion, our study demonstrates that under TBHP-induced oxidative stress, EGR1 knockdown mitigates NP cell senescence and mitochondrial dysfunction through the PINK1-Parkin dependent mitophagy pathway, thereby alleviating IDD.</p></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584924006014\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924006014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Knocking down EGR1 inhibits nucleus pulposus cell senescence and mitochondrial damage through activation of PINK1-Parkin dependent mitophagy, thereby delaying intervertebral disc degeneration
Mitophagy plays a crucial role in maintaining the homeostasis of intervertebral disc (IVD). Early Growth Response 1 (EGR1), a conservative transcription factor, is commonly upregulated under oxidative stress conditions and participates in regulating cellular senescence, apoptosis, and inflammatory responses. However, the specific role of EGR1 in nucleus pulposus (NP) cell senescence and mitophagy remains unclear. In this study, through bioinformatics analysis and validation using human tissue specimens, we found that EGR1 is significantly upregulated in IVD degeneration (IDD). Further experimental results demonstrate that knockdown of EGR1 inhibits TBHP-induced NP cell senescence and mitochondrial dysfunction while promoting the activation of mitophagy. The protective effect of EGR1 knockdown on NP cell senescence and mitochondrion disappears upon inhibition of mitophagy with mdivi1. Mechanistic studies reveal that EGR1 suppresses NP cell senescence and mitochondrial dysfunction by modulating the PINK1-Parkin dependent mitophagy pathway. Additionally, EGR1 knockdown delays acupuncture-induced IDD in rats. In conclusion, our study demonstrates that under TBHP-induced oxidative stress, EGR1 knockdown mitigates NP cell senescence and mitochondrial dysfunction through the PINK1-Parkin dependent mitophagy pathway, thereby alleviating IDD.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.