Guilian Tian, Katrina Bartas, May Hui, Lingxuan Chen, Jose J Vasquez, Ghalia Azouz, Pieter Derdeyn, Rían W Manville, Erick L Ho, Amanda S Fang, Yuan Li, Isabella Tyler, Vincent Setola, Jason Aoto, Geoffrey W Abbott, Kevin T Beier
{"title":"苍白球介导可卡因诱导行为可塑性控制的分子和回路决定因素","authors":"Guilian Tian, Katrina Bartas, May Hui, Lingxuan Chen, Jose J Vasquez, Ghalia Azouz, Pieter Derdeyn, Rían W Manville, Erick L Ho, Amanda S Fang, Yuan Li, Isabella Tyler, Vincent Setola, Jason Aoto, Geoffrey W Abbott, Kevin T Beier","doi":"10.1016/j.neuron.2024.07.018","DOIUrl":null,"url":null,"abstract":"<p><p>The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPe<sup>PV</sup>) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTA<sup>DA</sup>) cells projecting to the dorsomedial striatum (DMS). Interestingly, GPe<sup>PV</sup> cell activity in cocaine-naive mice is correlated with behavioral responses following cocaine, effectively predicting cocaine sensitivity. Expression of the voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability following cocaine was downregulated, contributing to the elevation in GPe<sup>PV</sup> cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPe<sup>PV</sup> cell excitability and impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its therapeutic potential to counteract psychostimulant use disorder.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3470-3485.e12"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular and circuit determinants in the globus pallidus mediating control of cocaine-induced behavioral plasticity.\",\"authors\":\"Guilian Tian, Katrina Bartas, May Hui, Lingxuan Chen, Jose J Vasquez, Ghalia Azouz, Pieter Derdeyn, Rían W Manville, Erick L Ho, Amanda S Fang, Yuan Li, Isabella Tyler, Vincent Setola, Jason Aoto, Geoffrey W Abbott, Kevin T Beier\",\"doi\":\"10.1016/j.neuron.2024.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPe<sup>PV</sup>) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTA<sup>DA</sup>) cells projecting to the dorsomedial striatum (DMS). Interestingly, GPe<sup>PV</sup> cell activity in cocaine-naive mice is correlated with behavioral responses following cocaine, effectively predicting cocaine sensitivity. Expression of the voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability following cocaine was downregulated, contributing to the elevation in GPe<sup>PV</sup> cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPe<sup>PV</sup> cell excitability and impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its therapeutic potential to counteract psychostimulant use disorder.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"3470-3485.e12\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2024.07.018\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.07.018","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Molecular and circuit determinants in the globus pallidus mediating control of cocaine-induced behavioral plasticity.
The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPePV) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTADA) cells projecting to the dorsomedial striatum (DMS). Interestingly, GPePV cell activity in cocaine-naive mice is correlated with behavioral responses following cocaine, effectively predicting cocaine sensitivity. Expression of the voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability following cocaine was downregulated, contributing to the elevation in GPePV cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPePV cell excitability and impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its therapeutic potential to counteract psychostimulant use disorder.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.