{"title":"小米(Eleusine coracana L.):从主食到超级食品--营养、生物活性、工业和气候适应潜力综合评述。","authors":"Simardeep Kaur, Arti Kumari, Karishma Seem, Gurkanwal Kaur, Deepesh Kumar, Surbhi Verma, Naseeb Singh, Amit Kumar, Manish Kumar, Sandeep Jaiswal, Rakesh Bhardwaj, Binay Kumar Singh, Amritbir Riar","doi":"10.1007/s00425-024-04502-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from \"poor man's staple food\" to \"a nutrient rich cereal\" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 3","pages":"75"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Finger millet (Eleusine coracana L.): from staple to superfood-a comprehensive review on nutritional, bioactive, industrial, and climate resilience potential.\",\"authors\":\"Simardeep Kaur, Arti Kumari, Karishma Seem, Gurkanwal Kaur, Deepesh Kumar, Surbhi Verma, Naseeb Singh, Amit Kumar, Manish Kumar, Sandeep Jaiswal, Rakesh Bhardwaj, Binay Kumar Singh, Amritbir Riar\",\"doi\":\"10.1007/s00425-024-04502-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Main conclusion: </strong>This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from \\\"poor man's staple food\\\" to \\\"a nutrient rich cereal\\\" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.</p>\",\"PeriodicalId\":20177,\"journal\":{\"name\":\"Planta\",\"volume\":\"260 3\",\"pages\":\"75\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00425-024-04502-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-024-04502-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Finger millet (Eleusine coracana L.): from staple to superfood-a comprehensive review on nutritional, bioactive, industrial, and climate resilience potential.
Main conclusion: This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from "poor man's staple food" to "a nutrient rich cereal" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.