{"title":"优化用于再生医学的间充质干细胞:糖尿病、肥胖症、自身免疫和炎症对疗效的影响:综述。","authors":"Dominika Przywara, Alicja Petniak, Paulina Gil-Kulik","doi":"10.12659/MSM.945331","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) are a promising tool that may be used in regenerative medicine. Thanks to their ability to differentiate and paracrine signaling, they can be used in the treatment of many diseases. Undifferentiated MSCs can support the regeneration of surrounding tissues through secreted substances and exosomes. This is possible thanks to the production of growth factors. These factors stimulate the growth of neighboring cells, have an anti-apoptotic effect, and support angiogenesis, and MSCs also have an immunomodulatory effect. The level of secreted factors may vary depending on many factors. Apart from the donor's health condition, it is also influenced by the source of MSCs, methods of harvesting, and even the banking of cells. This work is a review of research on how the patient's health condition affects the properties of obtained MSCs. The review discusses the impact of the patient's diabetes, obesity, autoimmune diseases, and inflammation, as well as the impact of the source of MSCs and methods of harvesting and banking cells on the phenotype, differentiation capacity, anti-inflammatory, angiogenic effects, and proliferation potential of MSCs. Knowledge about specific clinical factors allows for better use of the potential of stem cells and more appropriate targeting of procedures for collecting, multiplying, and banking these cells, as well as for their subsequent use. This article aims to review the characteristics, harvesting, banking, and paracrine signaling of MSCs and their role in diabetes, obesity, autoimmune and inflammatory diseases, and potential role in regenerative medicine.</p>","PeriodicalId":48888,"journal":{"name":"Medical Science Monitor","volume":"30 ","pages":"e945331"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340262/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Mesenchymal Stem Cells for Regenerative Medicine: Influence of Diabetes, Obesity, Autoimmune, and Inflammatory Conditions on Therapeutic Efficacy: A Review.\",\"authors\":\"Dominika Przywara, Alicja Petniak, Paulina Gil-Kulik\",\"doi\":\"10.12659/MSM.945331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSCs) are a promising tool that may be used in regenerative medicine. Thanks to their ability to differentiate and paracrine signaling, they can be used in the treatment of many diseases. Undifferentiated MSCs can support the regeneration of surrounding tissues through secreted substances and exosomes. This is possible thanks to the production of growth factors. These factors stimulate the growth of neighboring cells, have an anti-apoptotic effect, and support angiogenesis, and MSCs also have an immunomodulatory effect. The level of secreted factors may vary depending on many factors. Apart from the donor's health condition, it is also influenced by the source of MSCs, methods of harvesting, and even the banking of cells. This work is a review of research on how the patient's health condition affects the properties of obtained MSCs. The review discusses the impact of the patient's diabetes, obesity, autoimmune diseases, and inflammation, as well as the impact of the source of MSCs and methods of harvesting and banking cells on the phenotype, differentiation capacity, anti-inflammatory, angiogenic effects, and proliferation potential of MSCs. Knowledge about specific clinical factors allows for better use of the potential of stem cells and more appropriate targeting of procedures for collecting, multiplying, and banking these cells, as well as for their subsequent use. This article aims to review the characteristics, harvesting, banking, and paracrine signaling of MSCs and their role in diabetes, obesity, autoimmune and inflammatory diseases, and potential role in regenerative medicine.</p>\",\"PeriodicalId\":48888,\"journal\":{\"name\":\"Medical Science Monitor\",\"volume\":\"30 \",\"pages\":\"e945331\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340262/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Science Monitor\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12659/MSM.945331\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Science Monitor","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12659/MSM.945331","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Optimizing Mesenchymal Stem Cells for Regenerative Medicine: Influence of Diabetes, Obesity, Autoimmune, and Inflammatory Conditions on Therapeutic Efficacy: A Review.
Mesenchymal stem cells (MSCs) are a promising tool that may be used in regenerative medicine. Thanks to their ability to differentiate and paracrine signaling, they can be used in the treatment of many diseases. Undifferentiated MSCs can support the regeneration of surrounding tissues through secreted substances and exosomes. This is possible thanks to the production of growth factors. These factors stimulate the growth of neighboring cells, have an anti-apoptotic effect, and support angiogenesis, and MSCs also have an immunomodulatory effect. The level of secreted factors may vary depending on many factors. Apart from the donor's health condition, it is also influenced by the source of MSCs, methods of harvesting, and even the banking of cells. This work is a review of research on how the patient's health condition affects the properties of obtained MSCs. The review discusses the impact of the patient's diabetes, obesity, autoimmune diseases, and inflammation, as well as the impact of the source of MSCs and methods of harvesting and banking cells on the phenotype, differentiation capacity, anti-inflammatory, angiogenic effects, and proliferation potential of MSCs. Knowledge about specific clinical factors allows for better use of the potential of stem cells and more appropriate targeting of procedures for collecting, multiplying, and banking these cells, as well as for their subsequent use. This article aims to review the characteristics, harvesting, banking, and paracrine signaling of MSCs and their role in diabetes, obesity, autoimmune and inflammatory diseases, and potential role in regenerative medicine.
期刊介绍:
Medical Science Monitor (MSM) established in 1995 is an international, peer-reviewed scientific journal which publishes original articles in Clinical Medicine and related disciplines such as Epidemiology and Population Studies, Product Investigations, Development of Laboratory Techniques :: Diagnostics and Medical Technology which enable presentation of research or review works in overlapping areas of medicine and technology such us (but not limited to): medical diagnostics, medical imaging systems, computer simulation of health and disease processes, new medical devices, etc. Reviews and Special Reports - papers may be accepted on the basis that they provide a systematic, critical and up-to-date overview of literature pertaining to research or clinical topics. Meta-analyses are considered as reviews. A special attention will be paid to a teaching value of a review paper.
Medical Science Monitor is internationally indexed in Thomson-Reuters Web of Science, Journals Citation Report (JCR), Science Citation Index Expanded (SCI), Index Medicus MEDLINE, PubMed, PMC, EMBASE/Excerpta Medica, Chemical Abstracts CAS and Index Copernicus.