{"title":"NTNG2的复合杂合突变通过抑制CaMKII信号传导导致智力残疾。","authors":"Yaoting Chen, Jiang Chen, Lili Liang, Weiqian Dai, Nan Li, Shuangshuang Dong, Yongkun Zhan, Guiquan Chen, Yongguo Yu","doi":"10.1016/j.jgg.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Netrin-G2 is a membrane-anchored protein known to play critical roles in neuronal circuit development and synaptic organization. In this study, we identify compound heterozygous mutations of c.547delC, p.(Arg183Alafs∗186) and c.605G>A, p.(Trp202X) in NTNG2 causing a syndrome exhibiting developmental delay, intellectual disability, hypotonia, and facial dysmorphism. To elucidate the underlying cellular and molecular mechanisms, CRISPR-Cas9 technology is employed to generate a knock-in mouse model expressing the R183Afs and W202X mutations. We report that the Ntng2<sup>R183Afs/W202X</sup> mice exhibit hypotonia and impaired learning and memory. We find that the levels of CaMKII and p-GluA1<sup>Ser831</sup> are decreased, and excitatory postsynaptic transmission and long-term potentiation are impaired. To increase the activity of CaMKII, the mutant mice receive intraperitoneal injections of DCP-LA, a CaMKII agonist, and show improved cognitive function. Together, our findings reveal molecular mechanisms of how NTNG2 deficiency leads to impairments of cognitive ability and synaptic plasticity.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1204-1214"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compound heterozygous mutations of NTNG2 cause intellectual disability via inhibition of the CaMKII signaling.\",\"authors\":\"Yaoting Chen, Jiang Chen, Lili Liang, Weiqian Dai, Nan Li, Shuangshuang Dong, Yongkun Zhan, Guiquan Chen, Yongguo Yu\",\"doi\":\"10.1016/j.jgg.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Netrin-G2 is a membrane-anchored protein known to play critical roles in neuronal circuit development and synaptic organization. In this study, we identify compound heterozygous mutations of c.547delC, p.(Arg183Alafs∗186) and c.605G>A, p.(Trp202X) in NTNG2 causing a syndrome exhibiting developmental delay, intellectual disability, hypotonia, and facial dysmorphism. To elucidate the underlying cellular and molecular mechanisms, CRISPR-Cas9 technology is employed to generate a knock-in mouse model expressing the R183Afs and W202X mutations. We report that the Ntng2<sup>R183Afs/W202X</sup> mice exhibit hypotonia and impaired learning and memory. We find that the levels of CaMKII and p-GluA1<sup>Ser831</sup> are decreased, and excitatory postsynaptic transmission and long-term potentiation are impaired. To increase the activity of CaMKII, the mutant mice receive intraperitoneal injections of DCP-LA, a CaMKII agonist, and show improved cognitive function. Together, our findings reveal molecular mechanisms of how NTNG2 deficiency leads to impairments of cognitive ability and synaptic plasticity.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"1204-1214\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2024.08.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.08.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Compound heterozygous mutations of NTNG2 cause intellectual disability via inhibition of the CaMKII signaling.
Netrin-G2 is a membrane-anchored protein known to play critical roles in neuronal circuit development and synaptic organization. In this study, we identify compound heterozygous mutations of c.547delC, p.(Arg183Alafs∗186) and c.605G>A, p.(Trp202X) in NTNG2 causing a syndrome exhibiting developmental delay, intellectual disability, hypotonia, and facial dysmorphism. To elucidate the underlying cellular and molecular mechanisms, CRISPR-Cas9 technology is employed to generate a knock-in mouse model expressing the R183Afs and W202X mutations. We report that the Ntng2R183Afs/W202X mice exhibit hypotonia and impaired learning and memory. We find that the levels of CaMKII and p-GluA1Ser831 are decreased, and excitatory postsynaptic transmission and long-term potentiation are impaired. To increase the activity of CaMKII, the mutant mice receive intraperitoneal injections of DCP-LA, a CaMKII agonist, and show improved cognitive function. Together, our findings reveal molecular mechanisms of how NTNG2 deficiency leads to impairments of cognitive ability and synaptic plasticity.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.