Xue Zhong , Lihua Zhao , Peng Ren , Xiang Zhang , Jie Wang
{"title":"基于无人飞行器获取的图像,采用物理学指导的自动机器学习方法获取晴天的地表辐射温度","authors":"Xue Zhong , Lihua Zhao , Peng Ren , Xiang Zhang , Jie Wang","doi":"10.1016/j.compenvurbsys.2024.102175","DOIUrl":null,"url":null,"abstract":"<div><p>Urban surface radiometric temperatures, approximate to the surface kinetic temperatures, are predominantly retrieved using satellites or unmanned aerial vehicles (UAVs) and exhibit pronounced spatiotemporal variations. Despite numerous methods ranging from empirical to physical models for obtaining urban microscale surface radiometric temperatures via UAVs, challenges remain given the limited physical significance and substantial professional barriers to method application. Against this background, this study introduces a novel and straightforward approach for acquiring spatially distributed radiometric temperatures on sunny days without understanding the complex radiative transfer process as well as acquiring low-altitude atmospheric parameters. An automated machine learning was employed to train a model capable of efficiently estimating radiometric temperatures. Training and testing datasets were created based on the urban radiative transfer equation, incorporating three independent variables: UAV-measured surface brightness temperature, broadband emissivity, and sky view factor, which collectively represent the diverse thermal environments across different surface characteristics and urban layouts during sunny transitional and summer seasons. The model's accuracy was subsequently confirmed through direct comparisons with radiometric temperatures retrieved from UAV-collected multimodal images and kinetic temperatures synchronously collected on the ground across four periods. The results indicate that AutoGluon achieved high accuracy (<em>MAE</em>: 0.04 K; <em>RMSE</em>: 0.06 K; <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span>: 0.99). Additional ground measurement validations further demonstrated the model's reliability, with absolute biases on sunlit surfaces maintained within 1.25 K. Given its capability for real-time, high-spatial-resolution mapping of radiometric temperatures (April test: 8.70 cm, July test: 6.89 cm) in urban microscales with considerable heterogeneity, such a method is envisioned to be an effective tool for the dynamic monitoring and management of thermal environments at the microscale level in urban settings.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"113 ","pages":"Article 102175"},"PeriodicalIF":7.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physics-guided automated machine learning approach for obtaining surface radiometric temperatures on sunny days based on UAV-derived images\",\"authors\":\"Xue Zhong , Lihua Zhao , Peng Ren , Xiang Zhang , Jie Wang\",\"doi\":\"10.1016/j.compenvurbsys.2024.102175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban surface radiometric temperatures, approximate to the surface kinetic temperatures, are predominantly retrieved using satellites or unmanned aerial vehicles (UAVs) and exhibit pronounced spatiotemporal variations. Despite numerous methods ranging from empirical to physical models for obtaining urban microscale surface radiometric temperatures via UAVs, challenges remain given the limited physical significance and substantial professional barriers to method application. Against this background, this study introduces a novel and straightforward approach for acquiring spatially distributed radiometric temperatures on sunny days without understanding the complex radiative transfer process as well as acquiring low-altitude atmospheric parameters. An automated machine learning was employed to train a model capable of efficiently estimating radiometric temperatures. Training and testing datasets were created based on the urban radiative transfer equation, incorporating three independent variables: UAV-measured surface brightness temperature, broadband emissivity, and sky view factor, which collectively represent the diverse thermal environments across different surface characteristics and urban layouts during sunny transitional and summer seasons. The model's accuracy was subsequently confirmed through direct comparisons with radiometric temperatures retrieved from UAV-collected multimodal images and kinetic temperatures synchronously collected on the ground across four periods. The results indicate that AutoGluon achieved high accuracy (<em>MAE</em>: 0.04 K; <em>RMSE</em>: 0.06 K; <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span>: 0.99). Additional ground measurement validations further demonstrated the model's reliability, with absolute biases on sunlit surfaces maintained within 1.25 K. Given its capability for real-time, high-spatial-resolution mapping of radiometric temperatures (April test: 8.70 cm, July test: 6.89 cm) in urban microscales with considerable heterogeneity, such a method is envisioned to be an effective tool for the dynamic monitoring and management of thermal environments at the microscale level in urban settings.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"113 \",\"pages\":\"Article 102175\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524001042\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524001042","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
A physics-guided automated machine learning approach for obtaining surface radiometric temperatures on sunny days based on UAV-derived images
Urban surface radiometric temperatures, approximate to the surface kinetic temperatures, are predominantly retrieved using satellites or unmanned aerial vehicles (UAVs) and exhibit pronounced spatiotemporal variations. Despite numerous methods ranging from empirical to physical models for obtaining urban microscale surface radiometric temperatures via UAVs, challenges remain given the limited physical significance and substantial professional barriers to method application. Against this background, this study introduces a novel and straightforward approach for acquiring spatially distributed radiometric temperatures on sunny days without understanding the complex radiative transfer process as well as acquiring low-altitude atmospheric parameters. An automated machine learning was employed to train a model capable of efficiently estimating radiometric temperatures. Training and testing datasets were created based on the urban radiative transfer equation, incorporating three independent variables: UAV-measured surface brightness temperature, broadband emissivity, and sky view factor, which collectively represent the diverse thermal environments across different surface characteristics and urban layouts during sunny transitional and summer seasons. The model's accuracy was subsequently confirmed through direct comparisons with radiometric temperatures retrieved from UAV-collected multimodal images and kinetic temperatures synchronously collected on the ground across four periods. The results indicate that AutoGluon achieved high accuracy (MAE: 0.04 K; RMSE: 0.06 K; : 0.99). Additional ground measurement validations further demonstrated the model's reliability, with absolute biases on sunlit surfaces maintained within 1.25 K. Given its capability for real-time, high-spatial-resolution mapping of radiometric temperatures (April test: 8.70 cm, July test: 6.89 cm) in urban microscales with considerable heterogeneity, such a method is envisioned to be an effective tool for the dynamic monitoring and management of thermal environments at the microscale level in urban settings.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.