Xiaomei Yue, Mariana Kikuti, Claudio Marcello Melini, Emily Geary, Paulo Fioravante, Cesar Agustin Corzo
{"title":"加强疾病监测和防备:美国种猪群疾病发生的早期预警工具","authors":"Xiaomei Yue, Mariana Kikuti, Claudio Marcello Melini, Emily Geary, Paulo Fioravante, Cesar Agustin Corzo","doi":"10.1016/j.vetmic.2024.110215","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding regional disease risk is critical for swine disease prevention and control. Since 2011, the Morrison Swine Health Monitoring Project (MSHMP) has strengthened partnerships among practitioners and producers to report health events (e.g., porcine reproductive and respiratory syndrome (PRRS) virus outbreaks) at the U.S. national level. Using MSHMP data and PRRS as an example, an early regional occurrence warning tool to provide near-real-time alerts was developed. MSHMP-participating production systems were invited to enroll. An algorithm was developed to calculate the number of PRRSV-positive sites near each enrolled site, determined from site-specific radius. The radius was determined in three steps. First, an initial radius of 25 miles was set for sites in pig-dense states and 50 miles for others. Secondly, four variables were generated to account for the sites within the initial radius: A) Total number of PRRSV-positive sites; B) Number of PRRSV-positive sites from other production systems; C) Total number of sites enrolled, and D) Total number of sites monitored by MSHMP. Subsequently, the reporting radius was automatically increased when confidentiality concerns arose. Results were compiled into system-specific reports and shared weekly with each participant. Reports have been shared since May 9, 2023, representing 178 breeding sites, comprising approximately 565 K sows. Examples of how participants use these reports include adjusting biosecurity programs, frequency of supply introduction, and transportation routes. The early occurrence warning tool developed in this study enhances producers' ability to communicate effectively and respond quickly to health threats, mitigating regional disease while preparing for foreign disease introductions.</p></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110215"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378113524002372/pdfft?md5=d62b4c47e3edd287e233099d3541315b&pid=1-s2.0-S0378113524002372-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing disease surveillance and preparedness: An early warning tool for disease occurrence in U.S. swine breeding herds\",\"authors\":\"Xiaomei Yue, Mariana Kikuti, Claudio Marcello Melini, Emily Geary, Paulo Fioravante, Cesar Agustin Corzo\",\"doi\":\"10.1016/j.vetmic.2024.110215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding regional disease risk is critical for swine disease prevention and control. Since 2011, the Morrison Swine Health Monitoring Project (MSHMP) has strengthened partnerships among practitioners and producers to report health events (e.g., porcine reproductive and respiratory syndrome (PRRS) virus outbreaks) at the U.S. national level. Using MSHMP data and PRRS as an example, an early regional occurrence warning tool to provide near-real-time alerts was developed. MSHMP-participating production systems were invited to enroll. An algorithm was developed to calculate the number of PRRSV-positive sites near each enrolled site, determined from site-specific radius. The radius was determined in three steps. First, an initial radius of 25 miles was set for sites in pig-dense states and 50 miles for others. Secondly, four variables were generated to account for the sites within the initial radius: A) Total number of PRRSV-positive sites; B) Number of PRRSV-positive sites from other production systems; C) Total number of sites enrolled, and D) Total number of sites monitored by MSHMP. Subsequently, the reporting radius was automatically increased when confidentiality concerns arose. Results were compiled into system-specific reports and shared weekly with each participant. Reports have been shared since May 9, 2023, representing 178 breeding sites, comprising approximately 565 K sows. Examples of how participants use these reports include adjusting biosecurity programs, frequency of supply introduction, and transportation routes. The early occurrence warning tool developed in this study enhances producers' ability to communicate effectively and respond quickly to health threats, mitigating regional disease while preparing for foreign disease introductions.</p></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"298 \",\"pages\":\"Article 110215\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378113524002372/pdfft?md5=d62b4c47e3edd287e233099d3541315b&pid=1-s2.0-S0378113524002372-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113524002372\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002372","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Enhancing disease surveillance and preparedness: An early warning tool for disease occurrence in U.S. swine breeding herds
Understanding regional disease risk is critical for swine disease prevention and control. Since 2011, the Morrison Swine Health Monitoring Project (MSHMP) has strengthened partnerships among practitioners and producers to report health events (e.g., porcine reproductive and respiratory syndrome (PRRS) virus outbreaks) at the U.S. national level. Using MSHMP data and PRRS as an example, an early regional occurrence warning tool to provide near-real-time alerts was developed. MSHMP-participating production systems were invited to enroll. An algorithm was developed to calculate the number of PRRSV-positive sites near each enrolled site, determined from site-specific radius. The radius was determined in three steps. First, an initial radius of 25 miles was set for sites in pig-dense states and 50 miles for others. Secondly, four variables were generated to account for the sites within the initial radius: A) Total number of PRRSV-positive sites; B) Number of PRRSV-positive sites from other production systems; C) Total number of sites enrolled, and D) Total number of sites monitored by MSHMP. Subsequently, the reporting radius was automatically increased when confidentiality concerns arose. Results were compiled into system-specific reports and shared weekly with each participant. Reports have been shared since May 9, 2023, representing 178 breeding sites, comprising approximately 565 K sows. Examples of how participants use these reports include adjusting biosecurity programs, frequency of supply introduction, and transportation routes. The early occurrence warning tool developed in this study enhances producers' ability to communicate effectively and respond quickly to health threats, mitigating regional disease while preparing for foreign disease introductions.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.