{"title":"木质素热解的热转换研究和 Fe 的催化作用:反应分子动力学研究","authors":"","doi":"10.1016/j.joei.2024.101795","DOIUrl":null,"url":null,"abstract":"<div><p>Lignin is one of the important components of biomass, and its pyrolysis process has been widely studied. The advantages of iron-based catalysts are their low cost, low environmental pollution, and the ability to extract and reuse from the system. However, research on the effect of metallic iron on lignin pyrolysis is limited. This study revealed the influence of iron on lignin pyrolysis process at the microscopic level through reactive molecular dynamics (ReaxFF MD) simulation, while considering the influence of different temperatures. It was found that increasing the temperature can increase the production of H<sub>2</sub> and CO gases and improve the efficiency of lignin decomposition. In addition, the addition of catalyst iron can accelerate the decomposition of the benzene ring, making the lignin pyrolysis process deeper and more thorough, while increasing the production of H<sub>2</sub> and CO. The activation energy of the system was calculated and it was found that the addition of catalyst iron can significantly reduce the activation energy of lignin pyrolysis, proving the excellent catalytic effect of the catalyst. The catalytic pyrolysis strategy provided in this study, using iron as a catalyst to catalyze the pyrolysis process of lignin, can effectively utilize biomass resources in industrial production.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal conversion studies of lignin pyrolysis and the catalytic effect of fe: A reactive molecular dynamics study\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lignin is one of the important components of biomass, and its pyrolysis process has been widely studied. The advantages of iron-based catalysts are their low cost, low environmental pollution, and the ability to extract and reuse from the system. However, research on the effect of metallic iron on lignin pyrolysis is limited. This study revealed the influence of iron on lignin pyrolysis process at the microscopic level through reactive molecular dynamics (ReaxFF MD) simulation, while considering the influence of different temperatures. It was found that increasing the temperature can increase the production of H<sub>2</sub> and CO gases and improve the efficiency of lignin decomposition. In addition, the addition of catalyst iron can accelerate the decomposition of the benzene ring, making the lignin pyrolysis process deeper and more thorough, while increasing the production of H<sub>2</sub> and CO. The activation energy of the system was calculated and it was found that the addition of catalyst iron can significantly reduce the activation energy of lignin pyrolysis, proving the excellent catalytic effect of the catalyst. The catalytic pyrolysis strategy provided in this study, using iron as a catalyst to catalyze the pyrolysis process of lignin, can effectively utilize biomass resources in industrial production.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124002733\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002733","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
木质素是生物质的重要成分之一,其热解过程已被广泛研究。铁基催化剂的优点是成本低、环境污染小,并且能够从系统中提取和重复使用。然而,有关金属铁对木质素热解影响的研究还很有限。本研究通过反应分子动力学(ReaxFF MD)模拟,从微观层面揭示了铁对木质素热解过程的影响,同时考虑了不同温度的影响。结果发现,提高温度可以增加 H2 和 CO 气体的产生,提高木质素分解的效率。此外,催化剂铁的加入可加速苯环的分解,使木质素热解过程更深入、更彻底,同时增加 H2 和 CO 的产生。计算了体系的活化能,发现催化剂铁的加入能显著降低木质素热解的活化能,证明催化剂具有良好的催化效果。本研究提供的以铁为催化剂催化木质素热解过程的催化热解策略,可在工业生产中有效利用生物质资源。
Thermal conversion studies of lignin pyrolysis and the catalytic effect of fe: A reactive molecular dynamics study
Lignin is one of the important components of biomass, and its pyrolysis process has been widely studied. The advantages of iron-based catalysts are their low cost, low environmental pollution, and the ability to extract and reuse from the system. However, research on the effect of metallic iron on lignin pyrolysis is limited. This study revealed the influence of iron on lignin pyrolysis process at the microscopic level through reactive molecular dynamics (ReaxFF MD) simulation, while considering the influence of different temperatures. It was found that increasing the temperature can increase the production of H2 and CO gases and improve the efficiency of lignin decomposition. In addition, the addition of catalyst iron can accelerate the decomposition of the benzene ring, making the lignin pyrolysis process deeper and more thorough, while increasing the production of H2 and CO. The activation energy of the system was calculated and it was found that the addition of catalyst iron can significantly reduce the activation energy of lignin pyrolysis, proving the excellent catalytic effect of the catalyst. The catalytic pyrolysis strategy provided in this study, using iron as a catalyst to catalyze the pyrolysis process of lignin, can effectively utilize biomass resources in industrial production.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.