通过构件测力法研究格构式结构中角钢柱所承受的风荷载

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2024-08-17 DOI:10.1016/j.jweia.2024.105868
Qi Zhou , Yakun Gao , Zidong Zong , Ledong Zhu , Jin Wang
{"title":"通过构件测力法研究格构式结构中角钢柱所承受的风荷载","authors":"Qi Zhou ,&nbsp;Yakun Gao ,&nbsp;Zidong Zong ,&nbsp;Ledong Zhu ,&nbsp;Jin Wang","doi":"10.1016/j.jweia.2024.105868","DOIUrl":null,"url":null,"abstract":"<div><p>As the demand for precise prediction of fatigue and collapse continues to grow, it is imperative to conduct research on wind load calculation methods for lattice structures using members as the fundamental unit. This study focuses on the tower body of an angle steel lattice structure with a rectangular cross-section. The aerodynamic characteristics of entire segments, column members in lattice structures, and a single angle steel were investigated, along with the aerodynamic interference effects on members within lattice structures. The research findings indicate that drag coefficients cannot universally substitute the SRSS coefficients of column members or a single angle steel across all wind directions. Therefore, considering that the drag coefficient of the column member or single angle steel surpasses 98% of their SRSS coefficients at a wind direction of 45°, a particular skewed wind load factor was defined, and its fitting formula was proposed. Additionally, a calculation method for wind loads on columns within lattice structures was developed, introducing the concepts of SRSS angle and aerodynamic interference factors on members. The comparison among the experimental data, fitting formula, and proposed calculation method, were conducted. To facilitate the practical application, the simplified formulas for both AIF and SRSS were recommended.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"253 ","pages":"Article 105868"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of wind loads on angle steel columns in lattice structures via force measurement method on members\",\"authors\":\"Qi Zhou ,&nbsp;Yakun Gao ,&nbsp;Zidong Zong ,&nbsp;Ledong Zhu ,&nbsp;Jin Wang\",\"doi\":\"10.1016/j.jweia.2024.105868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the demand for precise prediction of fatigue and collapse continues to grow, it is imperative to conduct research on wind load calculation methods for lattice structures using members as the fundamental unit. This study focuses on the tower body of an angle steel lattice structure with a rectangular cross-section. The aerodynamic characteristics of entire segments, column members in lattice structures, and a single angle steel were investigated, along with the aerodynamic interference effects on members within lattice structures. The research findings indicate that drag coefficients cannot universally substitute the SRSS coefficients of column members or a single angle steel across all wind directions. Therefore, considering that the drag coefficient of the column member or single angle steel surpasses 98% of their SRSS coefficients at a wind direction of 45°, a particular skewed wind load factor was defined, and its fitting formula was proposed. Additionally, a calculation method for wind loads on columns within lattice structures was developed, introducing the concepts of SRSS angle and aerodynamic interference factors on members. The comparison among the experimental data, fitting formula, and proposed calculation method, were conducted. To facilitate the practical application, the simplified formulas for both AIF and SRSS were recommended.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"253 \",\"pages\":\"Article 105868\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002319\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002319","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

随着对疲劳和倒塌精确预测的需求不断增长,对以构件为基本单元的格构结构的风荷载计算方法进行研究势在必行。本研究的重点是矩形截面角钢格构的塔身。研究了整段结构、格状结构中柱构件和单根角钢的空气动力特性,以及格状结构中构件的空气动力干扰效应。研究结果表明,在所有风向下,阻力系数不能普遍替代柱构件或单根角钢的 SRSS 系数。因此,考虑到柱构件或单根角钢在风向 45° 时的阻力系数超过其 SRSS 系数的 98%,定义了一种特殊的倾斜风荷载系数,并提出了其拟合公式。此外,还引入了 SRSS 角和构件空气动力干扰系数的概念,开发了一种计算格构结构内支柱风荷载的方法。对实验数据、拟合公式和提出的计算方法进行了比较。为便于实际应用,推荐了 AIF 和 SRSS 的简化公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of wind loads on angle steel columns in lattice structures via force measurement method on members

As the demand for precise prediction of fatigue and collapse continues to grow, it is imperative to conduct research on wind load calculation methods for lattice structures using members as the fundamental unit. This study focuses on the tower body of an angle steel lattice structure with a rectangular cross-section. The aerodynamic characteristics of entire segments, column members in lattice structures, and a single angle steel were investigated, along with the aerodynamic interference effects on members within lattice structures. The research findings indicate that drag coefficients cannot universally substitute the SRSS coefficients of column members or a single angle steel across all wind directions. Therefore, considering that the drag coefficient of the column member or single angle steel surpasses 98% of their SRSS coefficients at a wind direction of 45°, a particular skewed wind load factor was defined, and its fitting formula was proposed. Additionally, a calculation method for wind loads on columns within lattice structures was developed, introducing the concepts of SRSS angle and aerodynamic interference factors on members. The comparison among the experimental data, fitting formula, and proposed calculation method, were conducted. To facilitate the practical application, the simplified formulas for both AIF and SRSS were recommended.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
期刊最新文献
Evaluating different categories of turbulence models for calculating air pollutant dispersion in street canyons with generic and real urban layouts Numerical simulation and experimental study of the effects of retaining block structures on wavefront steepening in rail tunnels A wake prediction framework based on the MOST Gaussian wake model and a deep learning approach Advanced statistical analysis of vortex-induced vibrations in suspension bridge hangers with and without Stockbridge dampers Converting dependence of extreme wind pressure coefficients across different epochs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1