面状立方氮化硼纳米粒子高温烧结的分子动力学研究

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL Journal of Aerosol Science Pub Date : 2024-07-31 DOI:10.1016/j.jaerosci.2024.106441
{"title":"面状立方氮化硼纳米粒子高温烧结的分子动力学研究","authors":"","doi":"10.1016/j.jaerosci.2024.106441","DOIUrl":null,"url":null,"abstract":"<div><p>The sintering mechanisms and temperature dependence of coalescence of colliding cubic boron nitride (c-BN) nanoparticles are investigated using classical molecular dynamics (MD) simulation. Particle-particle collisions of 2.55-nm octahedral c-BN nanoparticles, consisting solely of the most stable {111} facets, with half of the surface terminations being boron and the other half nitrogen, are analyzed statistically and evaluated to assess the initial temperature range (2500 K – 3100 K) for sintering and its effect on grain growth. At these temperatures, the collision process maximizes contact surface area through interfacial sliding, thereby minimizing free energy and accommodating dangling bonds. Moreover, the exothermic formation of bonds of the coalescing nanoparticles increases the temperature. The alignment of the {111} orientation of the two collided nanoparticles occurs at a temperature slightly above the melting point, and rapid grain growth happens when the temperature is a few hundred degrees higher than that. However, phase separation also takes place at the corners away from the collision plane of the merging nanoparticles. Between 3100 K and 3250 K, crystalline alignment occurs, which aids the sintering process and allows for the formation of a well-structured nanocluster. However, above 3300 K, phase separation dominates and drives the melting of the entire sintered nanocluster.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021850224001083/pdfft?md5=f8816000fb342bf601b1bb1600ac86d5&pid=1-s2.0-S0021850224001083-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics study of sintering of faceted cubic boron nitride nanoparticles at high temperatures\",\"authors\":\"\",\"doi\":\"10.1016/j.jaerosci.2024.106441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sintering mechanisms and temperature dependence of coalescence of colliding cubic boron nitride (c-BN) nanoparticles are investigated using classical molecular dynamics (MD) simulation. Particle-particle collisions of 2.55-nm octahedral c-BN nanoparticles, consisting solely of the most stable {111} facets, with half of the surface terminations being boron and the other half nitrogen, are analyzed statistically and evaluated to assess the initial temperature range (2500 K – 3100 K) for sintering and its effect on grain growth. At these temperatures, the collision process maximizes contact surface area through interfacial sliding, thereby minimizing free energy and accommodating dangling bonds. Moreover, the exothermic formation of bonds of the coalescing nanoparticles increases the temperature. The alignment of the {111} orientation of the two collided nanoparticles occurs at a temperature slightly above the melting point, and rapid grain growth happens when the temperature is a few hundred degrees higher than that. However, phase separation also takes place at the corners away from the collision plane of the merging nanoparticles. Between 3100 K and 3250 K, crystalline alignment occurs, which aids the sintering process and allows for the formation of a well-structured nanocluster. However, above 3300 K, phase separation dominates and drives the melting of the entire sintered nanocluster.</p></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021850224001083/pdfft?md5=f8816000fb342bf601b1bb1600ac86d5&pid=1-s2.0-S0021850224001083-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850224001083\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224001083","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用经典分子动力学(MD)模拟研究了碰撞立方氮化硼(c-BN)纳米粒子的烧结机理和凝聚的温度依赖性。2.55 纳米八面体立方氮化硼(c-BN)纳米粒子仅由最稳定的{111}面组成,其表面端点一半为硼,另一半为氮,对这些粒子间的碰撞进行了统计分析和评估,以评估烧结的初始温度范围(2500 K - 3100 K)及其对晶粒生长的影响。在这些温度下,碰撞过程通过界面滑动使接触表面积最大化,从而使自由能最小化并容纳悬空键。此外,凝聚纳米粒子的键的放热形成也会提高温度。两个碰撞的纳米粒子的{111}取向对齐发生在略高于熔点的温度下,而当温度高于熔点几百度时,晶粒会迅速生长。然而,相分离也发生在远离合并纳米粒子碰撞平面的角落。在 3100 K 到 3250 K 之间,晶体会发生排列,这有助于烧结过程,并能形成结构良好的纳米团簇。然而,在 3300 K 以上,相分离占主导地位,并促使整个烧结纳米团簇熔化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular dynamics study of sintering of faceted cubic boron nitride nanoparticles at high temperatures

The sintering mechanisms and temperature dependence of coalescence of colliding cubic boron nitride (c-BN) nanoparticles are investigated using classical molecular dynamics (MD) simulation. Particle-particle collisions of 2.55-nm octahedral c-BN nanoparticles, consisting solely of the most stable {111} facets, with half of the surface terminations being boron and the other half nitrogen, are analyzed statistically and evaluated to assess the initial temperature range (2500 K – 3100 K) for sintering and its effect on grain growth. At these temperatures, the collision process maximizes contact surface area through interfacial sliding, thereby minimizing free energy and accommodating dangling bonds. Moreover, the exothermic formation of bonds of the coalescing nanoparticles increases the temperature. The alignment of the {111} orientation of the two collided nanoparticles occurs at a temperature slightly above the melting point, and rapid grain growth happens when the temperature is a few hundred degrees higher than that. However, phase separation also takes place at the corners away from the collision plane of the merging nanoparticles. Between 3100 K and 3250 K, crystalline alignment occurs, which aids the sintering process and allows for the formation of a well-structured nanocluster. However, above 3300 K, phase separation dominates and drives the melting of the entire sintered nanocluster.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
期刊最新文献
Non-linear optics for an online probing of the specific surface area of nanoparticles in the aerosol phase Computational and experimental investigation of an aerosol extraction device for use in dentistry Collision frequencies across collision regimes in two-component systems Enhanced organic aerosol formation induced by inorganic aerosol formed in laboratory photochemical experiments Development of a source-term migration model for a large bubble formed in a core disruptive accident
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1