Lucas H. Staffa , Sílvia H.P. Bettini , Marcelo A. Chinelatto
{"title":"通过原子力显微镜纳米级红外光谱鉴定聚乳酸/聚CL 混合物中 PEG-b-PCL 多嵌段共聚物的位置和胶束化情况","authors":"Lucas H. Staffa , Sílvia H.P. Bettini , Marcelo A. Chinelatto","doi":"10.1016/j.polymertesting.2024.108549","DOIUrl":null,"url":null,"abstract":"<div><p>The IR absorption mapping of two multiblock copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) segments (PEG-<em>b</em>-PCL) in poly(acid lactic) and poly(ε-caprolactone) blends (PLA/PCL) was performed via AFM nanoscale IR spectroscopy. These copolymers, having the same number average molar masses (<span><math><mrow><mover><msub><mi>M</mi><mi>n</mi></msub><mo>‾</mo></mover></mrow></math></span>) but varying block sizes, were added into the blend in different amounts (1 and 5 wt%) using a co-rotating twin-screw extrusion. The results revealed that copolymers with smaller blocks are preferentially located near the interface when incorporated in small quantities. Increasing the copolymer content led to preferential diffusion into the PLA matrix. Compatibilization with the longer block-size copolymers also led to preferential diffusion in the PLA matrix, albeit with a tendency to form micelles. This hampers the overall mechanical properties of the blend, making the compatibilized blend more brittle than neat PLA. Compatibilization with the short block-size copolymers showed no micellization and improved the mechanical behavior of PLA/PCL.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"138 ","pages":"Article 108549"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002265/pdfft?md5=bcdf9311a64e38a113bab6d61a0561b5&pid=1-s2.0-S0142941824002265-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Identifying the location and micellization of PEG-b-PCL multiblock copolymers in PLA/PCL blends via AFM nanoscale IR spectroscopy\",\"authors\":\"Lucas H. Staffa , Sílvia H.P. Bettini , Marcelo A. Chinelatto\",\"doi\":\"10.1016/j.polymertesting.2024.108549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The IR absorption mapping of two multiblock copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) segments (PEG-<em>b</em>-PCL) in poly(acid lactic) and poly(ε-caprolactone) blends (PLA/PCL) was performed via AFM nanoscale IR spectroscopy. These copolymers, having the same number average molar masses (<span><math><mrow><mover><msub><mi>M</mi><mi>n</mi></msub><mo>‾</mo></mover></mrow></math></span>) but varying block sizes, were added into the blend in different amounts (1 and 5 wt%) using a co-rotating twin-screw extrusion. The results revealed that copolymers with smaller blocks are preferentially located near the interface when incorporated in small quantities. Increasing the copolymer content led to preferential diffusion into the PLA matrix. Compatibilization with the longer block-size copolymers also led to preferential diffusion in the PLA matrix, albeit with a tendency to form micelles. This hampers the overall mechanical properties of the blend, making the compatibilized blend more brittle than neat PLA. Compatibilization with the short block-size copolymers showed no micellization and improved the mechanical behavior of PLA/PCL.</p></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"138 \",\"pages\":\"Article 108549\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002265/pdfft?md5=bcdf9311a64e38a113bab6d61a0561b5&pid=1-s2.0-S0142941824002265-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002265\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002265","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Identifying the location and micellization of PEG-b-PCL multiblock copolymers in PLA/PCL blends via AFM nanoscale IR spectroscopy
The IR absorption mapping of two multiblock copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) segments (PEG-b-PCL) in poly(acid lactic) and poly(ε-caprolactone) blends (PLA/PCL) was performed via AFM nanoscale IR spectroscopy. These copolymers, having the same number average molar masses () but varying block sizes, were added into the blend in different amounts (1 and 5 wt%) using a co-rotating twin-screw extrusion. The results revealed that copolymers with smaller blocks are preferentially located near the interface when incorporated in small quantities. Increasing the copolymer content led to preferential diffusion into the PLA matrix. Compatibilization with the longer block-size copolymers also led to preferential diffusion in the PLA matrix, albeit with a tendency to form micelles. This hampers the overall mechanical properties of the blend, making the compatibilized blend more brittle than neat PLA. Compatibilization with the short block-size copolymers showed no micellization and improved the mechanical behavior of PLA/PCL.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.