基于异质面诱导半金属 2H-VS2 的面内磁隧道结中的巨隧道磁阻

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-17 DOI:10.1016/j.commatsci.2024.113290
{"title":"基于异质面诱导半金属 2H-VS2 的面内磁隧道结中的巨隧道磁阻","authors":"","doi":"10.1016/j.commatsci.2024.113290","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic tunnel junctions (MTJs) constructed from atomically thin two-dimensional (2D) magnetic materials have attracted great attention in recent years because it meets the requirements of miniaturization and high tunability of next-generation spintronic devices. In this work, we demonstrate that the ferromagnetic semiconductor VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is transformed into a half-metal in VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/MoSSe vdW heterostructure. Based on the heterostructure, we design an in-plane MTJs that comprise a monolayer VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> barrier sandwiched between two VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/MoSSe heterostructure electrodes. Through density functional calculations combined with a nonequilibrium Green’s function technique, it is found that the tunnel magnetoresistance (TMR) ratio as high as 4.35 × 10<span><math><mrow><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mtext>%</mtext></mrow></math></span> can be achieved. Moreover, the TMR ratio can be tuned by the barrier length, and the maximum value exceeds 10<span><math><mrow><msup><mrow></mrow><mrow><mn>15</mn></mrow></msup><mtext>%</mtext></mrow></math></span>. These results not only provide a novel route for designing MTJs using 2D ferromagnetic semiconductor material, but also demonstrate the great importance of vdW heterostructures in the design of spintronic devices.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant tunnel magnetoresistance in in-plane magnetic tunnel junctions based on the heterointerface-induced half-metallic 2H-VS2\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetic tunnel junctions (MTJs) constructed from atomically thin two-dimensional (2D) magnetic materials have attracted great attention in recent years because it meets the requirements of miniaturization and high tunability of next-generation spintronic devices. In this work, we demonstrate that the ferromagnetic semiconductor VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is transformed into a half-metal in VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/MoSSe vdW heterostructure. Based on the heterostructure, we design an in-plane MTJs that comprise a monolayer VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> barrier sandwiched between two VS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/MoSSe heterostructure electrodes. Through density functional calculations combined with a nonequilibrium Green’s function technique, it is found that the tunnel magnetoresistance (TMR) ratio as high as 4.35 × 10<span><math><mrow><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mtext>%</mtext></mrow></math></span> can be achieved. Moreover, the TMR ratio can be tuned by the barrier length, and the maximum value exceeds 10<span><math><mrow><msup><mrow></mrow><mrow><mn>15</mn></mrow></msup><mtext>%</mtext></mrow></math></span>. These results not only provide a novel route for designing MTJs using 2D ferromagnetic semiconductor material, but also demonstrate the great importance of vdW heterostructures in the design of spintronic devices.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005111\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005111","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由原子级薄的二维(2D)磁性材料构建的磁隧道结(MTJ)引起了人们的极大关注,因为它能满足下一代自旋电子器件对微型化和高可调谐性的要求。在这项工作中,我们证明了铁磁性半导体 VS2 在 VS2/MoSSe vdW 异质结构中转变为半金属。基于这种异质结构,我们设计了一种平面内 MTJ,它由夹在两个 VS2/MoSSe 异质结构电极之间的单层 VS2 势垒组成。通过密度泛函计算与非平衡格林函数技术相结合,我们发现隧道磁阻(TMR)比可高达 4.35 × 109%。此外,隧道磁阻比还可以通过势垒长度进行调节,最大值超过 1015%。这些结果不仅为利用二维铁磁半导体材料设计 MTJ 提供了一条新途径,而且证明了 vdW 异质结构在自旋电子器件设计中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Giant tunnel magnetoresistance in in-plane magnetic tunnel junctions based on the heterointerface-induced half-metallic 2H-VS2

Magnetic tunnel junctions (MTJs) constructed from atomically thin two-dimensional (2D) magnetic materials have attracted great attention in recent years because it meets the requirements of miniaturization and high tunability of next-generation spintronic devices. In this work, we demonstrate that the ferromagnetic semiconductor VS2 is transformed into a half-metal in VS2/MoSSe vdW heterostructure. Based on the heterostructure, we design an in-plane MTJs that comprise a monolayer VS2 barrier sandwiched between two VS2/MoSSe heterostructure electrodes. Through density functional calculations combined with a nonequilibrium Green’s function technique, it is found that the tunnel magnetoresistance (TMR) ratio as high as 4.35 × 109% can be achieved. Moreover, the TMR ratio can be tuned by the barrier length, and the maximum value exceeds 1015%. These results not only provide a novel route for designing MTJs using 2D ferromagnetic semiconductor material, but also demonstrate the great importance of vdW heterostructures in the design of spintronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1