具有高迁移率的三元四极体薄膜的磁迁移特性

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-08-01 DOI:10.1016/j.mtphys.2024.101486
Patrick J. Taylor , Brandi L. Wooten , Owen A. Vail , Harry Hier , Joseph P. Heremans , Jagadeesh S. Moodera , Hang Chi
{"title":"具有高迁移率的三元四极体薄膜的磁迁移特性","authors":"Patrick J. Taylor ,&nbsp;Brandi L. Wooten ,&nbsp;Owen A. Vail ,&nbsp;Harry Hier ,&nbsp;Joseph P. Heremans ,&nbsp;Jagadeesh S. Moodera ,&nbsp;Hang Chi","doi":"10.1016/j.mtphys.2024.101486","DOIUrl":null,"url":null,"abstract":"<div><p>(Bi,Sb)<sub>2</sub>(Te,Se)<sub>3</sub> tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of <em>p</em>-type (Bi<sub>0.43</sub>Sb<sub>0.57</sub>)<sub>2</sub>Te<sub>3</sub> and <em>n</em>-type Bi<sub>2</sub>(Te<sub>0.95</sub>Se<sub>0.05</sub>)<sub>3</sub> that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 10<sup>18</sup> cm<sup>−3</sup> and a record high mobility exceeding 10<sup>4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101486"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542529324001627/pdfft?md5=7861bba9c7f90ecaee275997afe3cfee&pid=1-s2.0-S2542529324001627-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetotransport properties of ternary tetradymite films with high mobility\",\"authors\":\"Patrick J. Taylor ,&nbsp;Brandi L. Wooten ,&nbsp;Owen A. Vail ,&nbsp;Harry Hier ,&nbsp;Joseph P. Heremans ,&nbsp;Jagadeesh S. Moodera ,&nbsp;Hang Chi\",\"doi\":\"10.1016/j.mtphys.2024.101486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>(Bi,Sb)<sub>2</sub>(Te,Se)<sub>3</sub> tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of <em>p</em>-type (Bi<sub>0.43</sub>Sb<sub>0.57</sub>)<sub>2</sub>Te<sub>3</sub> and <em>n</em>-type Bi<sub>2</sub>(Te<sub>0.95</sub>Se<sub>0.05</sub>)<sub>3</sub> that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 10<sup>18</sup> cm<sup>−3</sup> and a record high mobility exceeding 10<sup>4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities.</p></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"46 \",\"pages\":\"Article 101486\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001627/pdfft?md5=7861bba9c7f90ecaee275997afe3cfee&pid=1-s2.0-S2542529324001627-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001627\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001627","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

(Bi,Sb)2(Te,Se)3四元晶材料是热电能量转换最有效的材料之一,也是拓扑绝缘体自旋电子技术最稳健的材料,但要想在这两种技术中发挥作用,必须具备相当不同的掺杂特性。在这项工作中,我们报告了分子束外延生长 p 型 (Bi0.43Sb0.57)2Te3 和 n 型 Bi2(Te0.95Se0.05)3 的结果,它们可以为这两种技术基础做出贡献,但对于拓扑绝缘体尤其有用,因为在拓扑绝缘体中,低体掺杂对于器件利用类似于狄拉克的拓扑表面态至关重要。全面的温度、磁场和角度依赖性磁传输测量证明了这些三元四元晶薄膜的卓越品质,在 2 K 时显示出 1018 cm-3 量级的低载流子密度和超过 104 cm2 V-1 s-1 的创纪录高迁移率。在液氦温度下,9 T 的强舒布尼科夫-德-哈斯(SdH)量子振荡的显著表现以及其中的分析,使我们能够通过优化三元合金比例对四元晶电子结构进行直接实验研究。我们的努力证明,四极微粒是可穿戴消费电子产品中微型热电制冷和发电的关键平台,也是具有前所未有的磁电功能的未来拓扑自旋电子学的关键平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetotransport properties of ternary tetradymite films with high mobility

(Bi,Sb)2(Te,Se)3 tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of p-type (Bi0.43Sb0.57)2Te3 and n-type Bi2(Te0.95Se0.05)3 that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 1018 cm−3 and a record high mobility exceeding 104 cm2 V−1 s−1 at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Interface Engineering for Minimizing Trapped Charge Density in β-Ga₂O₃ Schottky Barrier Diodes for High-Performance Power Devices Large magnetocaloric effect near liquid hydrogen temperatures in Er1-xTmxGa materials Ultra-soft, foldable, wearable piezoelectric sensor based on the aligned BaTiO3 nanoparticles Mist CVD technology for gallium oxide deposition: A review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1