Patrick J. Taylor , Brandi L. Wooten , Owen A. Vail , Harry Hier , Joseph P. Heremans , Jagadeesh S. Moodera , Hang Chi
{"title":"具有高迁移率的三元四极体薄膜的磁迁移特性","authors":"Patrick J. Taylor , Brandi L. Wooten , Owen A. Vail , Harry Hier , Joseph P. Heremans , Jagadeesh S. Moodera , Hang Chi","doi":"10.1016/j.mtphys.2024.101486","DOIUrl":null,"url":null,"abstract":"<div><p>(Bi,Sb)<sub>2</sub>(Te,Se)<sub>3</sub> tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of <em>p</em>-type (Bi<sub>0.43</sub>Sb<sub>0.57</sub>)<sub>2</sub>Te<sub>3</sub> and <em>n</em>-type Bi<sub>2</sub>(Te<sub>0.95</sub>Se<sub>0.05</sub>)<sub>3</sub> that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 10<sup>18</sup> cm<sup>−3</sup> and a record high mobility exceeding 10<sup>4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101486"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542529324001627/pdfft?md5=7861bba9c7f90ecaee275997afe3cfee&pid=1-s2.0-S2542529324001627-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetotransport properties of ternary tetradymite films with high mobility\",\"authors\":\"Patrick J. Taylor , Brandi L. Wooten , Owen A. Vail , Harry Hier , Joseph P. Heremans , Jagadeesh S. Moodera , Hang Chi\",\"doi\":\"10.1016/j.mtphys.2024.101486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>(Bi,Sb)<sub>2</sub>(Te,Se)<sub>3</sub> tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of <em>p</em>-type (Bi<sub>0.43</sub>Sb<sub>0.57</sub>)<sub>2</sub>Te<sub>3</sub> and <em>n</em>-type Bi<sub>2</sub>(Te<sub>0.95</sub>Se<sub>0.05</sub>)<sub>3</sub> that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 10<sup>18</sup> cm<sup>−3</sup> and a record high mobility exceeding 10<sup>4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities.</p></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"46 \",\"pages\":\"Article 101486\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001627/pdfft?md5=7861bba9c7f90ecaee275997afe3cfee&pid=1-s2.0-S2542529324001627-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001627\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001627","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
(Bi,Sb)2(Te,Se)3四元晶材料是热电能量转换最有效的材料之一,也是拓扑绝缘体自旋电子技术最稳健的材料,但要想在这两种技术中发挥作用,必须具备相当不同的掺杂特性。在这项工作中,我们报告了分子束外延生长 p 型 (Bi0.43Sb0.57)2Te3 和 n 型 Bi2(Te0.95Se0.05)3 的结果,它们可以为这两种技术基础做出贡献,但对于拓扑绝缘体尤其有用,因为在拓扑绝缘体中,低体掺杂对于器件利用类似于狄拉克的拓扑表面态至关重要。全面的温度、磁场和角度依赖性磁传输测量证明了这些三元四元晶薄膜的卓越品质,在 2 K 时显示出 1018 cm-3 量级的低载流子密度和超过 104 cm2 V-1 s-1 的创纪录高迁移率。在液氦温度下,9 T 的强舒布尼科夫-德-哈斯(SdH)量子振荡的显著表现以及其中的分析,使我们能够通过优化三元合金比例对四元晶电子结构进行直接实验研究。我们的努力证明,四极微粒是可穿戴消费电子产品中微型热电制冷和发电的关键平台,也是具有前所未有的磁电功能的未来拓扑自旋电子学的关键平台。
Magnetotransport properties of ternary tetradymite films with high mobility
(Bi,Sb)2(Te,Se)3 tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of p-type (Bi0.43Sb0.57)2Te3 and n-type Bi2(Te0.95Se0.05)3 that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 1018 cm−3 and a record high mobility exceeding 104 cm2 V−1 s−1 at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.