{"title":"带式输送机短时粉尘排放的分析缩放规律模型框架","authors":"C.Y. Wang , L. Fang","doi":"10.1016/j.apt.2024.104613","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at explaining the short-time dust emission from belt conveyors, an analytical scaling law model framework is introduced, employing the same assumptions and wall models as traditional numerical simulations. Further, assuming a piecewise mean velocity profile, the Lagrangian mean velocity of dust particles can be written as a general expression. This expression is validated in various cases, including the 2D Belt, 3D Belt, 2D Tire, and 3D Tire cases. Numerical results show that the theoretical prediction, with key parameters fixed at <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>5</mn><mo>,</mo><mi>κ</mi><mo>=</mo><mn>0.4187</mn></mrow></math></span>, and <span><math><mrow><mi>E</mi><mo>=</mo><mn>9.793</mn></mrow></math></span>, fits well with the simulated Lagrangian mean velocity profiles. For example, in the 2D Belt case, short-time agreement is achieved within <span><math><mrow><mi>t</mi><mo>⩽</mo><mn>1</mn></mrow></math></span> s, indicating the model’s effectiveness in predicting dust dispersion within this time frame.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 10","pages":"Article 104613"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical scaling law model framework for short-time dust emission from belt conveyor\",\"authors\":\"C.Y. Wang , L. Fang\",\"doi\":\"10.1016/j.apt.2024.104613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming at explaining the short-time dust emission from belt conveyors, an analytical scaling law model framework is introduced, employing the same assumptions and wall models as traditional numerical simulations. Further, assuming a piecewise mean velocity profile, the Lagrangian mean velocity of dust particles can be written as a general expression. This expression is validated in various cases, including the 2D Belt, 3D Belt, 2D Tire, and 3D Tire cases. Numerical results show that the theoretical prediction, with key parameters fixed at <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>5</mn><mo>,</mo><mi>κ</mi><mo>=</mo><mn>0.4187</mn></mrow></math></span>, and <span><math><mrow><mi>E</mi><mo>=</mo><mn>9.793</mn></mrow></math></span>, fits well with the simulated Lagrangian mean velocity profiles. For example, in the 2D Belt case, short-time agreement is achieved within <span><math><mrow><mi>t</mi><mo>⩽</mo><mn>1</mn></mrow></math></span> s, indicating the model’s effectiveness in predicting dust dispersion within this time frame.</p></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":\"35 10\",\"pages\":\"Article 104613\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883124002899\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002899","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
为了解释带式输送机的短时粉尘排放,本文引入了一个分析缩放定律模型框架,采用了与传统数值模拟相同的假设和壁面模型。此外,假定存在片断平均速度剖面,粉尘颗粒的拉格朗日平均速度可以写成一般表达式。该表达式在各种情况下都得到了验证,包括二维带状、三维带状、二维轮胎和三维轮胎情况。数值结果表明,在关键参数固定为 us=5、κ=0.4187 和 E=9.793 的情况下,理论预测结果与模拟的拉格朗日平均速度曲线非常吻合。例如,在 2D Belt 案例中,在 t⩽1 秒内实现了短时吻合,这表明该模型能有效预测该时间范围内的尘埃弥散。
An analytical scaling law model framework for short-time dust emission from belt conveyor
Aiming at explaining the short-time dust emission from belt conveyors, an analytical scaling law model framework is introduced, employing the same assumptions and wall models as traditional numerical simulations. Further, assuming a piecewise mean velocity profile, the Lagrangian mean velocity of dust particles can be written as a general expression. This expression is validated in various cases, including the 2D Belt, 3D Belt, 2D Tire, and 3D Tire cases. Numerical results show that the theoretical prediction, with key parameters fixed at , and , fits well with the simulated Lagrangian mean velocity profiles. For example, in the 2D Belt case, short-time agreement is achieved within s, indicating the model’s effectiveness in predicting dust dispersion within this time frame.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)