{"title":"热液条件调节极端气候对北半球植被生长的影响","authors":"Zhen Xu, Duqi Liu, Lujie Zhao","doi":"10.1111/geb.13898","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Climate extremes are becoming more frequent under global warming, with substantial repercussions for vegetation growth. The degree to which climate extremes increase the risk of high-impact events on vegetation growth is of high concern.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Northern Hemisphere (north of 30°N).</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>From 2001 to 2022.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Plants.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We utilised solar-induced chlorophyll fluorescence (SIF) and the normalised difference vegetation index (NDVI) as proxies for vegetation growth. We performed event coincidence and sensitivity analyses to attribute satellite-derived vegetation growth extremes to diverse climate extremes (extreme heat, cold, wet and drought) in the Northern Hemisphere.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our results showed that extreme heat and cold were the main climatic extremes that induced positive and negative vegetation growth extremes north of 30°N, respectively, mainly in cold and humid ecosystems (boreal and temperate forests). Water-related extreme events accounted for less than one-third of vegetation extremes. The contribution of drought to positive vegetation growth extreme events (approximately 17%), mainly in cold and humid ecosystems, was even slightly higher than that of extreme wet (approximately 12%), which predominantly impacted relatively warm and arid ecosystems (croplands and temperate grasslands). We further identified potential climatic thresholds that could reverse vegetation growth responses to climate extremes (temperature is 12.5°C and climatic water deficit is -60 mm, approximately). We also showed that the past two decades of warming and precipitation changes did not induce a shift in the main climatic drivers of vegetation extremes across northern ecosystems.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Our results emphasise the crucial role of background hydrothermal conditions in the attribution of vegetation growth extremes to diverse climate extremes across northern ecosystems and have substantial implications for predicting how Northern Hemisphere vegetation will respond to increasing climate extremes in the future.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 11","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal Conditions Modulate the Impact of Climate Extremes on Vegetation Growth in the Northern Hemisphere\",\"authors\":\"Zhen Xu, Duqi Liu, Lujie Zhao\",\"doi\":\"10.1111/geb.13898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Climate extremes are becoming more frequent under global warming, with substantial repercussions for vegetation growth. The degree to which climate extremes increase the risk of high-impact events on vegetation growth is of high concern.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Northern Hemisphere (north of 30°N).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>From 2001 to 2022.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Plants.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We utilised solar-induced chlorophyll fluorescence (SIF) and the normalised difference vegetation index (NDVI) as proxies for vegetation growth. We performed event coincidence and sensitivity analyses to attribute satellite-derived vegetation growth extremes to diverse climate extremes (extreme heat, cold, wet and drought) in the Northern Hemisphere.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Our results showed that extreme heat and cold were the main climatic extremes that induced positive and negative vegetation growth extremes north of 30°N, respectively, mainly in cold and humid ecosystems (boreal and temperate forests). Water-related extreme events accounted for less than one-third of vegetation extremes. The contribution of drought to positive vegetation growth extreme events (approximately 17%), mainly in cold and humid ecosystems, was even slightly higher than that of extreme wet (approximately 12%), which predominantly impacted relatively warm and arid ecosystems (croplands and temperate grasslands). We further identified potential climatic thresholds that could reverse vegetation growth responses to climate extremes (temperature is 12.5°C and climatic water deficit is -60 mm, approximately). We also showed that the past two decades of warming and precipitation changes did not induce a shift in the main climatic drivers of vegetation extremes across northern ecosystems.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Our results emphasise the crucial role of background hydrothermal conditions in the attribution of vegetation growth extremes to diverse climate extremes across northern ecosystems and have substantial implications for predicting how Northern Hemisphere vegetation will respond to increasing climate extremes in the future.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 11\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13898\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13898","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Hydrothermal Conditions Modulate the Impact of Climate Extremes on Vegetation Growth in the Northern Hemisphere
Aim
Climate extremes are becoming more frequent under global warming, with substantial repercussions for vegetation growth. The degree to which climate extremes increase the risk of high-impact events on vegetation growth is of high concern.
Location
Northern Hemisphere (north of 30°N).
Time Period
From 2001 to 2022.
Major Taxa Studied
Plants.
Methods
We utilised solar-induced chlorophyll fluorescence (SIF) and the normalised difference vegetation index (NDVI) as proxies for vegetation growth. We performed event coincidence and sensitivity analyses to attribute satellite-derived vegetation growth extremes to diverse climate extremes (extreme heat, cold, wet and drought) in the Northern Hemisphere.
Results
Our results showed that extreme heat and cold were the main climatic extremes that induced positive and negative vegetation growth extremes north of 30°N, respectively, mainly in cold and humid ecosystems (boreal and temperate forests). Water-related extreme events accounted for less than one-third of vegetation extremes. The contribution of drought to positive vegetation growth extreme events (approximately 17%), mainly in cold and humid ecosystems, was even slightly higher than that of extreme wet (approximately 12%), which predominantly impacted relatively warm and arid ecosystems (croplands and temperate grasslands). We further identified potential climatic thresholds that could reverse vegetation growth responses to climate extremes (temperature is 12.5°C and climatic water deficit is -60 mm, approximately). We also showed that the past two decades of warming and precipitation changes did not induce a shift in the main climatic drivers of vegetation extremes across northern ecosystems.
Main Conclusions
Our results emphasise the crucial role of background hydrothermal conditions in the attribution of vegetation growth extremes to diverse climate extremes across northern ecosystems and have substantial implications for predicting how Northern Hemisphere vegetation will respond to increasing climate extremes in the future.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.