{"title":"用于生产免疫蛋白酶体抑制剂的西林杆菌巨合成酶生物工程","authors":"","doi":"10.1016/j.chempr.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><div>The natural product (NP) class of syrbactins are potent proteasome inhibitors produced by hybrids of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). Here, we describe the stepwise reassembly of an entire NRPS/PKS hybrid to produce a new syrbactin derivative by utilizing the recently described “eXchange Unit between Thiolation domains” (XUTs) approach. Remarkably, XUT-based engineering allowed the direct assembly of PKS and NRPS modules to introduce an α,β-unsaturated Michael system in a macrolactam moiety, which represents the inhibitory warhead of syrbactins. The novel derivative was produced in <em>E. coli</em>, isolated, and examined for its ability to inhibit yeast (yCP), human constitutive (cCP), and immunoproteasome (iCP). The engineered NP maintained the inhibitory activities of the syrbactin class but, due to rational modifications, inhibited iCP most strongly. Moreover, analysis of the crystal structure of yCP in complex with the derivative revealed further design strategies for even more specific iCP inhibition.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioengineering of syrbactin megasynthetases for immunoproteasome inhibitor production\",\"authors\":\"\",\"doi\":\"10.1016/j.chempr.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The natural product (NP) class of syrbactins are potent proteasome inhibitors produced by hybrids of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). Here, we describe the stepwise reassembly of an entire NRPS/PKS hybrid to produce a new syrbactin derivative by utilizing the recently described “eXchange Unit between Thiolation domains” (XUTs) approach. Remarkably, XUT-based engineering allowed the direct assembly of PKS and NRPS modules to introduce an α,β-unsaturated Michael system in a macrolactam moiety, which represents the inhibitory warhead of syrbactins. The novel derivative was produced in <em>E. coli</em>, isolated, and examined for its ability to inhibit yeast (yCP), human constitutive (cCP), and immunoproteasome (iCP). The engineered NP maintained the inhibitory activities of the syrbactin class but, due to rational modifications, inhibited iCP most strongly. Moreover, analysis of the crystal structure of yCP in complex with the derivative revealed further design strategies for even more specific iCP inhibition.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424003565\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424003565","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioengineering of syrbactin megasynthetases for immunoproteasome inhibitor production
The natural product (NP) class of syrbactins are potent proteasome inhibitors produced by hybrids of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). Here, we describe the stepwise reassembly of an entire NRPS/PKS hybrid to produce a new syrbactin derivative by utilizing the recently described “eXchange Unit between Thiolation domains” (XUTs) approach. Remarkably, XUT-based engineering allowed the direct assembly of PKS and NRPS modules to introduce an α,β-unsaturated Michael system in a macrolactam moiety, which represents the inhibitory warhead of syrbactins. The novel derivative was produced in E. coli, isolated, and examined for its ability to inhibit yeast (yCP), human constitutive (cCP), and immunoproteasome (iCP). The engineered NP maintained the inhibitory activities of the syrbactin class but, due to rational modifications, inhibited iCP most strongly. Moreover, analysis of the crystal structure of yCP in complex with the derivative revealed further design strategies for even more specific iCP inhibition.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.