具有独特电阻开关机制和特性的反铁电异质结构晶闸管。

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-18 Epub Date: 2024-08-19 DOI:10.1021/acs.nanolett.4c02705
Meng-Hsuan Yang, Che-Hung Wang, Yu-Hong Lai, Chien-Hua Wang, Yen-Jung Chen, Jui-Yuan Chen, Ying-Hao Chu, Wen-Wei Wu
{"title":"具有独特电阻开关机制和特性的反铁电异质结构晶闸管。","authors":"Meng-Hsuan Yang, Che-Hung Wang, Yu-Hong Lai, Chien-Hua Wang, Yen-Jung Chen, Jui-Yuan Chen, Ying-Hao Chu, Wen-Wei Wu","doi":"10.1021/acs.nanolett.4c02705","DOIUrl":null,"url":null,"abstract":"<p><p>A novel antiferroelectric material, PbSnO<sub>3</sub> (PSO), was introduced into a resistive random access memory (RRAM) to reveal its resistive switching (RS) properties. It exhibits outstanding electrical performance with a large memory window (>10<sup>4</sup>), narrow switching voltage distribution (±2 V), and low power consumption. Using high-resolution transmission electron microscopy, we observed the antiferroelectric properties and remanent polarization of the PSO thin films. The in-plane shear strains in the monoclinic PSO layer are attributed to oxygen octahedral tilts, resulting in misfit dislocations and grain boundaries at the PSO/SRO interface. Furthermore, the incoherent grain boundaries between the orthorhombic and monoclinic phases are assumed to be the primary paths of Ag<sup>+</sup> filaments. Therefore, the RS behavior is primarily dominated by antiferroelectric polarization and defect mechanisms for the PSO structures. The RS behavior of antiferroelectric heterostructures controlled by switching spontaneous polarization and strain, defects, and surface chemistry reactions can facilitate the development of new antiferroelectric device systems.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiferroelectric Heterostructures Memristors with Unique Resistive Switching Mechanisms and Properties.\",\"authors\":\"Meng-Hsuan Yang, Che-Hung Wang, Yu-Hong Lai, Chien-Hua Wang, Yen-Jung Chen, Jui-Yuan Chen, Ying-Hao Chu, Wen-Wei Wu\",\"doi\":\"10.1021/acs.nanolett.4c02705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel antiferroelectric material, PbSnO<sub>3</sub> (PSO), was introduced into a resistive random access memory (RRAM) to reveal its resistive switching (RS) properties. It exhibits outstanding electrical performance with a large memory window (>10<sup>4</sup>), narrow switching voltage distribution (±2 V), and low power consumption. Using high-resolution transmission electron microscopy, we observed the antiferroelectric properties and remanent polarization of the PSO thin films. The in-plane shear strains in the monoclinic PSO layer are attributed to oxygen octahedral tilts, resulting in misfit dislocations and grain boundaries at the PSO/SRO interface. Furthermore, the incoherent grain boundaries between the orthorhombic and monoclinic phases are assumed to be the primary paths of Ag<sup>+</sup> filaments. Therefore, the RS behavior is primarily dominated by antiferroelectric polarization and defect mechanisms for the PSO structures. The RS behavior of antiferroelectric heterostructures controlled by switching spontaneous polarization and strain, defects, and surface chemistry reactions can facilitate the development of new antiferroelectric device systems.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02705\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02705","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在电阻式随机存取存储器(RRAM)中引入了一种新型反铁电材料 PbSnO3(PSO),以揭示其电阻开关(RS)特性。它具有出色的电气性能,存储窗口大(>104),开关电压分布窄(±2 V),功耗低。我们使用高分辨率透射电子显微镜观察了 PSO 薄膜的反铁电特性和剩磁极化。单斜 PSO 层的面内剪切应变归因于八面体氧倾斜,导致 PSO/SRO 界面出现错位和晶界。此外,正交相与单斜相之间的不连贯晶界被假定为 Ag+ 细丝的主要路径。因此,PSO 结构的 RS 行为主要由反铁电极化和缺陷机制主导。通过切换自发极化和应变、缺陷和表面化学反应控制反铁电异质结构的 RS 行为,可以促进新型反铁电器件系统的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antiferroelectric Heterostructures Memristors with Unique Resistive Switching Mechanisms and Properties.

A novel antiferroelectric material, PbSnO3 (PSO), was introduced into a resistive random access memory (RRAM) to reveal its resistive switching (RS) properties. It exhibits outstanding electrical performance with a large memory window (>104), narrow switching voltage distribution (±2 V), and low power consumption. Using high-resolution transmission electron microscopy, we observed the antiferroelectric properties and remanent polarization of the PSO thin films. The in-plane shear strains in the monoclinic PSO layer are attributed to oxygen octahedral tilts, resulting in misfit dislocations and grain boundaries at the PSO/SRO interface. Furthermore, the incoherent grain boundaries between the orthorhombic and monoclinic phases are assumed to be the primary paths of Ag+ filaments. Therefore, the RS behavior is primarily dominated by antiferroelectric polarization and defect mechanisms for the PSO structures. The RS behavior of antiferroelectric heterostructures controlled by switching spontaneous polarization and strain, defects, and surface chemistry reactions can facilitate the development of new antiferroelectric device systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1