Eleanor Dearlove, Sam Harrison, Claus Svendsen, David Spurgeon
{"title":"管理油棕种植园的农用化学品投入可能对生态系统造成风险:筛选级风险评估结果。","authors":"Eleanor Dearlove, Sam Harrison, Claus Svendsen, David Spurgeon","doi":"10.1016/j.envpol.2024.124749","DOIUrl":null,"url":null,"abstract":"<p><p>Palm oil is a high value crop widely grown in the tropics. The management of palm oil is characterised by widespread agrochemical use. Here we report the results of a screening level risk assessment conducted from the available literature on the environmental concentration of agrochemicals in surface waters and soils in palm oil growing areas. To date, only a small number of published studies have measured pollutant concentrations in and around palm oil plantations. To identify potential high-risk contaminants, a standard SSD based risk assessment, establishing risk quotients for detected contaminants, was conducted in relation to available species sensitivity distributions. A probabilistic SSD based risk assessment, calculating potential risk distributions, was also conducted for contaminants with the required number of data points available. Metals were the most commonly detected (and measured) substances and also presented the greatest risk, especially copper and zinc, but also nickel, lead and cadmium. For these metals, environmental concentrations overlapped levels found to cause effects in toxicity studies, indicating the potential for adverse outcomes from exposure. To fully understand the extent of this risk, more detailed studies are needed that assess metal speciation states and bioavailability under the prevailing soil and water chemistry conditions in palm oil plots. Limited studies have measured pesticide concentrations in palm oil systems. In these few cases, only a few active substances have been measured. From the limited information available, potential risks are indicated due to the presence of some insecticides. However, fungicides are also widely used for palm oil disease management, but little data studies are available to assess both exposure and potential effects. To further assess the potential chemical footprint of different palm oil management practices, studies are needed that systematically assess pollutant levels across a range of chemical groups to consider effects within a mixture context.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124749"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agrochemical inputs to managed oil palm plantations are a probable risk to ecosystems: Results from a screening level risk assessment.\",\"authors\":\"Eleanor Dearlove, Sam Harrison, Claus Svendsen, David Spurgeon\",\"doi\":\"10.1016/j.envpol.2024.124749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Palm oil is a high value crop widely grown in the tropics. The management of palm oil is characterised by widespread agrochemical use. Here we report the results of a screening level risk assessment conducted from the available literature on the environmental concentration of agrochemicals in surface waters and soils in palm oil growing areas. To date, only a small number of published studies have measured pollutant concentrations in and around palm oil plantations. To identify potential high-risk contaminants, a standard SSD based risk assessment, establishing risk quotients for detected contaminants, was conducted in relation to available species sensitivity distributions. A probabilistic SSD based risk assessment, calculating potential risk distributions, was also conducted for contaminants with the required number of data points available. Metals were the most commonly detected (and measured) substances and also presented the greatest risk, especially copper and zinc, but also nickel, lead and cadmium. For these metals, environmental concentrations overlapped levels found to cause effects in toxicity studies, indicating the potential for adverse outcomes from exposure. To fully understand the extent of this risk, more detailed studies are needed that assess metal speciation states and bioavailability under the prevailing soil and water chemistry conditions in palm oil plots. Limited studies have measured pesticide concentrations in palm oil systems. In these few cases, only a few active substances have been measured. From the limited information available, potential risks are indicated due to the presence of some insecticides. However, fungicides are also widely used for palm oil disease management, but little data studies are available to assess both exposure and potential effects. To further assess the potential chemical footprint of different palm oil management practices, studies are needed that systematically assess pollutant levels across a range of chemical groups to consider effects within a mixture context.</p>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\" \",\"pages\":\"124749\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envpol.2024.124749\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.124749","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Agrochemical inputs to managed oil palm plantations are a probable risk to ecosystems: Results from a screening level risk assessment.
Palm oil is a high value crop widely grown in the tropics. The management of palm oil is characterised by widespread agrochemical use. Here we report the results of a screening level risk assessment conducted from the available literature on the environmental concentration of agrochemicals in surface waters and soils in palm oil growing areas. To date, only a small number of published studies have measured pollutant concentrations in and around palm oil plantations. To identify potential high-risk contaminants, a standard SSD based risk assessment, establishing risk quotients for detected contaminants, was conducted in relation to available species sensitivity distributions. A probabilistic SSD based risk assessment, calculating potential risk distributions, was also conducted for contaminants with the required number of data points available. Metals were the most commonly detected (and measured) substances and also presented the greatest risk, especially copper and zinc, but also nickel, lead and cadmium. For these metals, environmental concentrations overlapped levels found to cause effects in toxicity studies, indicating the potential for adverse outcomes from exposure. To fully understand the extent of this risk, more detailed studies are needed that assess metal speciation states and bioavailability under the prevailing soil and water chemistry conditions in palm oil plots. Limited studies have measured pesticide concentrations in palm oil systems. In these few cases, only a few active substances have been measured. From the limited information available, potential risks are indicated due to the presence of some insecticides. However, fungicides are also widely used for palm oil disease management, but little data studies are available to assess both exposure and potential effects. To further assess the potential chemical footprint of different palm oil management practices, studies are needed that systematically assess pollutant levels across a range of chemical groups to consider effects within a mixture context.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.