Monica Pava-Ripoll , Amy K. Miller , Hans K. Loechelt-Yoshioka , George C. Ziobro , Martine Ferguson
{"title":"使用多重聚合酶链式反应 (PCR) 检测添加了昆虫片段的全麦面粉中的昆虫片段。","authors":"Monica Pava-Ripoll , Amy K. Miller , Hans K. Loechelt-Yoshioka , George C. Ziobro , Martine Ferguson","doi":"10.1016/j.jfp.2024.100348","DOIUrl":null,"url":null,"abstract":"<div><p>The need for a sensitive molecular method to detect specific species of insect contaminants in food products remains a significant challenge in the food industry. This study evaluated the detection limit of a multiplex end-point PCR assay for detecting insects in food. The assay amplifies two fragments of the cytochrome oxidase subunit I gene (COI-Fa and COI-Fb) and one fragment of the protein-coding wingless (wg) gene found in insects. Five insect species, comprising three vectors of foodborne pathogens (the housefly, <em>Musca domestica</em>, the American cockroach, <em>Periplaneta americana</em>, and the pharaoh ant, <em>Monomorium pharaonis</em>) and two storage insect pests (the red flour beetle, <em>Tribolium castaneum</em> and the Indian meal moth, <em>Plodia interpunctella</em>), were spiked separately and in combination at levels of 1, 0.1, 0.01, and 0.001% in whole wheat flour. At spike levels greater than 0.01%, amplicon bands of expected sizes were seen in 100% of samples containing fragments from distinct insect species. At least 25% of spiked samples at the lowest spike level had amplicon bands, except for samples spiked with <em>M. domestica</em>. Results showed an 18.9% probability (with 11.3% and 30% lower and upper confidence limits, respectively) of detecting insect fragments at the lowest spike level (0.001%, corresponding to 3–22 fragments), which is far below the FDA’s regulatory level of less than 75 fragments per 50 g of wheat flour. The intensity of amplicon bands in the gel images was higher at higher spike levels. However, this method is not quantitative enough to extrapolate the intensity of the amplicon bands to the number of insect fragments present in a sample. This multiplex assay was also evaluated in a variety of market food samples derived from plants and animals, showing its potential use in various food types. Overall, the sensitivity and specificity of this molecular approach suggest that it could be used in the future as a screening tool for detecting insect contaminants in food.</p></div>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":"87 10","pages":"Article 100348"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362028X24001327/pdfft?md5=88588626825e8c6cec0dabea1976419d&pid=1-s2.0-S0362028X24001327-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection Limits of Insect Fragments in Spiked Whole Wheat Flour Using Multiplex Polymerase Chain Reaction (PCR)\",\"authors\":\"Monica Pava-Ripoll , Amy K. Miller , Hans K. Loechelt-Yoshioka , George C. Ziobro , Martine Ferguson\",\"doi\":\"10.1016/j.jfp.2024.100348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The need for a sensitive molecular method to detect specific species of insect contaminants in food products remains a significant challenge in the food industry. This study evaluated the detection limit of a multiplex end-point PCR assay for detecting insects in food. The assay amplifies two fragments of the cytochrome oxidase subunit I gene (COI-Fa and COI-Fb) and one fragment of the protein-coding wingless (wg) gene found in insects. Five insect species, comprising three vectors of foodborne pathogens (the housefly, <em>Musca domestica</em>, the American cockroach, <em>Periplaneta americana</em>, and the pharaoh ant, <em>Monomorium pharaonis</em>) and two storage insect pests (the red flour beetle, <em>Tribolium castaneum</em> and the Indian meal moth, <em>Plodia interpunctella</em>), were spiked separately and in combination at levels of 1, 0.1, 0.01, and 0.001% in whole wheat flour. At spike levels greater than 0.01%, amplicon bands of expected sizes were seen in 100% of samples containing fragments from distinct insect species. At least 25% of spiked samples at the lowest spike level had amplicon bands, except for samples spiked with <em>M. domestica</em>. Results showed an 18.9% probability (with 11.3% and 30% lower and upper confidence limits, respectively) of detecting insect fragments at the lowest spike level (0.001%, corresponding to 3–22 fragments), which is far below the FDA’s regulatory level of less than 75 fragments per 50 g of wheat flour. The intensity of amplicon bands in the gel images was higher at higher spike levels. However, this method is not quantitative enough to extrapolate the intensity of the amplicon bands to the number of insect fragments present in a sample. This multiplex assay was also evaluated in a variety of market food samples derived from plants and animals, showing its potential use in various food types. Overall, the sensitivity and specificity of this molecular approach suggest that it could be used in the future as a screening tool for detecting insect contaminants in food.</p></div>\",\"PeriodicalId\":15903,\"journal\":{\"name\":\"Journal of food protection\",\"volume\":\"87 10\",\"pages\":\"Article 100348\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362028X24001327/pdfft?md5=88588626825e8c6cec0dabea1976419d&pid=1-s2.0-S0362028X24001327-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of food protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362028X24001327\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362028X24001327","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Detection Limits of Insect Fragments in Spiked Whole Wheat Flour Using Multiplex Polymerase Chain Reaction (PCR)
The need for a sensitive molecular method to detect specific species of insect contaminants in food products remains a significant challenge in the food industry. This study evaluated the detection limit of a multiplex end-point PCR assay for detecting insects in food. The assay amplifies two fragments of the cytochrome oxidase subunit I gene (COI-Fa and COI-Fb) and one fragment of the protein-coding wingless (wg) gene found in insects. Five insect species, comprising three vectors of foodborne pathogens (the housefly, Musca domestica, the American cockroach, Periplaneta americana, and the pharaoh ant, Monomorium pharaonis) and two storage insect pests (the red flour beetle, Tribolium castaneum and the Indian meal moth, Plodia interpunctella), were spiked separately and in combination at levels of 1, 0.1, 0.01, and 0.001% in whole wheat flour. At spike levels greater than 0.01%, amplicon bands of expected sizes were seen in 100% of samples containing fragments from distinct insect species. At least 25% of spiked samples at the lowest spike level had amplicon bands, except for samples spiked with M. domestica. Results showed an 18.9% probability (with 11.3% and 30% lower and upper confidence limits, respectively) of detecting insect fragments at the lowest spike level (0.001%, corresponding to 3–22 fragments), which is far below the FDA’s regulatory level of less than 75 fragments per 50 g of wheat flour. The intensity of amplicon bands in the gel images was higher at higher spike levels. However, this method is not quantitative enough to extrapolate the intensity of the amplicon bands to the number of insect fragments present in a sample. This multiplex assay was also evaluated in a variety of market food samples derived from plants and animals, showing its potential use in various food types. Overall, the sensitivity and specificity of this molecular approach suggest that it could be used in the future as a screening tool for detecting insect contaminants in food.
期刊介绍:
The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with:
Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain;
Microbiological food quality and traditional/novel methods to assay microbiological food quality;
Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation;
Food fermentations and food-related probiotics;
Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers;
Risk assessments for food-related hazards;
Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods;
Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.