Yan Wang, Lihua Liang, Ran Li, Yihua Wang, Changfu Hao
{"title":"比较 ChatGPT、Claude 和 Bard 在支持近视防控方面的性能。","authors":"Yan Wang, Lihua Liang, Ran Li, Yihua Wang, Changfu Hao","doi":"10.2147/JMDH.S473680","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong> Chatbots, which are based on large language models, are increasingly being used in public health. However, the effectiveness of chatbot responses has been debated, and their performance in myopia prevention and control has not been fully explored. This study aimed to evaluate the effectiveness of three well-known chatbots-ChatGPT, Claude, and Bard-in responding to public health questions about myopia.</p><p><strong>Methods: </strong> Nineteen public health questions about myopia (including three topics of policy, basics and measures) were responded individually by three chatbots. After shuffling the order, each chatbot response was independently rated by 4 raters for comprehensiveness, accuracy and relevance.</p><p><strong>Results: </strong> The study's questions have undergone reliable testing. There was a significant difference among the word count responses of all 3 chatbots. From most to least, the order was ChatGPT, Bard, and Claude. All 3 chatbots had a composite score above 4 out of 5. ChatGPT scored the highest in all aspects of the assessment. However, all chatbots exhibit shortcomings, such as giving fabricated responses.</p><p><strong>Conclusion: </strong> Chatbots have shown great potential in public health, with ChatGPT being the best. The future use of chatbots as a public health tool will require rapid development of standards for their use and monitoring, as well as continued research, evaluation and improvement of chatbots.</p>","PeriodicalId":16357,"journal":{"name":"Journal of Multidisciplinary Healthcare","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330241/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Performance of ChatGPT, Claude and Bard in Support of Myopia Prevention and Control.\",\"authors\":\"Yan Wang, Lihua Liang, Ran Li, Yihua Wang, Changfu Hao\",\"doi\":\"10.2147/JMDH.S473680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong> Chatbots, which are based on large language models, are increasingly being used in public health. However, the effectiveness of chatbot responses has been debated, and their performance in myopia prevention and control has not been fully explored. This study aimed to evaluate the effectiveness of three well-known chatbots-ChatGPT, Claude, and Bard-in responding to public health questions about myopia.</p><p><strong>Methods: </strong> Nineteen public health questions about myopia (including three topics of policy, basics and measures) were responded individually by three chatbots. After shuffling the order, each chatbot response was independently rated by 4 raters for comprehensiveness, accuracy and relevance.</p><p><strong>Results: </strong> The study's questions have undergone reliable testing. There was a significant difference among the word count responses of all 3 chatbots. From most to least, the order was ChatGPT, Bard, and Claude. All 3 chatbots had a composite score above 4 out of 5. ChatGPT scored the highest in all aspects of the assessment. However, all chatbots exhibit shortcomings, such as giving fabricated responses.</p><p><strong>Conclusion: </strong> Chatbots have shown great potential in public health, with ChatGPT being the best. The future use of chatbots as a public health tool will require rapid development of standards for their use and monitoring, as well as continued research, evaluation and improvement of chatbots.</p>\",\"PeriodicalId\":16357,\"journal\":{\"name\":\"Journal of Multidisciplinary Healthcare\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Healthcare\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JMDH.S473680\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JMDH.S473680","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Comparison of the Performance of ChatGPT, Claude and Bard in Support of Myopia Prevention and Control.
Purpose: Chatbots, which are based on large language models, are increasingly being used in public health. However, the effectiveness of chatbot responses has been debated, and their performance in myopia prevention and control has not been fully explored. This study aimed to evaluate the effectiveness of three well-known chatbots-ChatGPT, Claude, and Bard-in responding to public health questions about myopia.
Methods: Nineteen public health questions about myopia (including three topics of policy, basics and measures) were responded individually by three chatbots. After shuffling the order, each chatbot response was independently rated by 4 raters for comprehensiveness, accuracy and relevance.
Results: The study's questions have undergone reliable testing. There was a significant difference among the word count responses of all 3 chatbots. From most to least, the order was ChatGPT, Bard, and Claude. All 3 chatbots had a composite score above 4 out of 5. ChatGPT scored the highest in all aspects of the assessment. However, all chatbots exhibit shortcomings, such as giving fabricated responses.
Conclusion: Chatbots have shown great potential in public health, with ChatGPT being the best. The future use of chatbots as a public health tool will require rapid development of standards for their use and monitoring, as well as continued research, evaluation and improvement of chatbots.
期刊介绍:
The Journal of Multidisciplinary Healthcare (JMDH) aims to represent and publish research in healthcare areas delivered by practitioners of different disciplines. This includes studies and reviews conducted by multidisciplinary teams as well as research which evaluates or reports the results or conduct of such teams or healthcare processes in general. The journal covers a very wide range of areas and we welcome submissions from practitioners at all levels and from all over the world. Good healthcare is not bounded by person, place or time and the journal aims to reflect this. The JMDH is published as an open-access journal to allow this wide range of practical, patient relevant research to be immediately available to practitioners who can access and use it immediately upon publication.