Hui Jiang , Mengle Jia , Jiaqi Xiong , Changrun Zhao , Ting Wang , Lingbao Kong , Qi Peng
{"title":"猪 deltacoronavirus 核壳蛋白与宿主细胞蛋白之间的网络交互作用。","authors":"Hui Jiang , Mengle Jia , Jiaqi Xiong , Changrun Zhao , Ting Wang , Lingbao Kong , Qi Peng","doi":"10.1016/j.vetmic.2024.110225","DOIUrl":null,"url":null,"abstract":"<div><p>Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that can cause diarrhea in pigs of all ages with varying severity. Host–virus protein interactions are critical for intracellular viral replication. Elucidating the interactions between cellular and viral proteins can help us to design antiviral strategies. PDCoV N protein is the most abundant and vital regulator in virus replication. In this study, 604 host proteins were identified to interact with PDCoV N protein by Co-IP combined with LC-MS, of which 243 proteins were specifically bound to N protein. PPI analysis revealed that the N-interacting host proteins are categorized into three groups: ribonucleoprotein complex biogenesis modulation, cellular nitrogen compound metabolism, and nucleic acid binding. GO and KEGG analyses showed that the host proteins are primarily involved in mRNA splicing, stress granule assembly, spliceosomal snRNP assembly. Additionally, four host proteins-TRIM25, HNRNPUL1, RPS27A, and SLC3A2-were selected to validate the interactome data through Co-IP and Confocal assays. This study can help in designing anti-PDCoV strategies and understanding the replication mechanism of PDCoV.</p></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110225"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The network interactions between the porcine deltacoronavirus nucleocapsid protein and host cellular proteins\",\"authors\":\"Hui Jiang , Mengle Jia , Jiaqi Xiong , Changrun Zhao , Ting Wang , Lingbao Kong , Qi Peng\",\"doi\":\"10.1016/j.vetmic.2024.110225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that can cause diarrhea in pigs of all ages with varying severity. Host–virus protein interactions are critical for intracellular viral replication. Elucidating the interactions between cellular and viral proteins can help us to design antiviral strategies. PDCoV N protein is the most abundant and vital regulator in virus replication. In this study, 604 host proteins were identified to interact with PDCoV N protein by Co-IP combined with LC-MS, of which 243 proteins were specifically bound to N protein. PPI analysis revealed that the N-interacting host proteins are categorized into three groups: ribonucleoprotein complex biogenesis modulation, cellular nitrogen compound metabolism, and nucleic acid binding. GO and KEGG analyses showed that the host proteins are primarily involved in mRNA splicing, stress granule assembly, spliceosomal snRNP assembly. Additionally, four host proteins-TRIM25, HNRNPUL1, RPS27A, and SLC3A2-were selected to validate the interactome data through Co-IP and Confocal assays. This study can help in designing anti-PDCoV strategies and understanding the replication mechanism of PDCoV.</p></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"298 \",\"pages\":\"Article 110225\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113524002475\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002475","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
猪 deltacoronavirus(PDCoV)是一种新出现的猪冠状病毒,可导致各种年龄的猪不同程度的腹泻。宿主与病毒蛋白质之间的相互作用对于病毒在细胞内的复制至关重要。阐明细胞蛋白和病毒蛋白之间的相互作用有助于我们设计抗病毒策略。PDCoV N 蛋白是病毒复制过程中最丰富、最重要的调节因子。本研究通过 Co-IP 结合 LC-MS 鉴定出 604 种与 PDCoV N 蛋白相互作用的宿主蛋白,其中 243 种蛋白与 N 蛋白特异性结合。PPI分析显示,与N蛋白相互作用的宿主蛋白可分为三类:核糖核蛋白复合物生物发生调节、细胞氮化合物代谢和核酸结合。GO 和 KEGG 分析表明,宿主蛋白主要参与 mRNA 剪接、应激颗粒组装和剪接体 snRNP 组装。此外,研究人员还选择了四个宿主蛋白--TRIM25、HNRNPUL1、RPS27A和SLC3A2--通过Co-IP和共聚焦试验验证了相互作用组数据。这项研究有助于设计抗 PDCoV 策略和了解 PDCoV 的复制机制。
The network interactions between the porcine deltacoronavirus nucleocapsid protein and host cellular proteins
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that can cause diarrhea in pigs of all ages with varying severity. Host–virus protein interactions are critical for intracellular viral replication. Elucidating the interactions between cellular and viral proteins can help us to design antiviral strategies. PDCoV N protein is the most abundant and vital regulator in virus replication. In this study, 604 host proteins were identified to interact with PDCoV N protein by Co-IP combined with LC-MS, of which 243 proteins were specifically bound to N protein. PPI analysis revealed that the N-interacting host proteins are categorized into three groups: ribonucleoprotein complex biogenesis modulation, cellular nitrogen compound metabolism, and nucleic acid binding. GO and KEGG analyses showed that the host proteins are primarily involved in mRNA splicing, stress granule assembly, spliceosomal snRNP assembly. Additionally, four host proteins-TRIM25, HNRNPUL1, RPS27A, and SLC3A2-were selected to validate the interactome data through Co-IP and Confocal assays. This study can help in designing anti-PDCoV strategies and understanding the replication mechanism of PDCoV.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.