利用磁共振成像和机器学习算法建立并验证脑小血管疾病患者三年内中风风险分层模型

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-08-21 DOI:10.1016/j.slast.2024.100177
{"title":"利用磁共振成像和机器学习算法建立并验证脑小血管疾病患者三年内中风风险分层模型","authors":"","doi":"10.1016/j.slast.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cerebral small vessel disease (CSVD) is a major cause of stroke, particularly in the elderly population, leading to significant morbidity and mortality. Accurate identification of high-risk patients and timing of stroke occurrence plays a crucial role in patient prevention and treatment. The study aimed to establish and validate a risk stratification model for stroke within three years in patients with CSVD using a combined MRI and machine learning algorithm approach.</p></div><div><h3>Methods</h3><p>The assessment encompassed demographic, clinical, biochemical, and MRI-derived parameters. Correlation analysis, logistic regression, receiver operating characteristic (ROC) curve analysis, and nnet neural network algorithm were employed to evaluate the predictive value of machine learning algorithms and MRI parameters for stroke occurrence within 3 years in patients with CSVD.</p></div><div><h3>Results</h3><p>MRI-derived parameters, including average WMH volume, perfusion deficit volume, ischemic core volume, microbleed count, and perivascular spaces, exhibited strong correlations with stroke occurrence (<em>P</em> &lt; 0.001). MRI-derived parameters demonstrated high sensitivities (0.719 to 0.906), specificities (0.704 to 0.877), and AUC values (0.815 to 0.871). The combined model of machine learning algorithms and MRI parameters yielded an AUC value of 0.925, indicating significantly high predictive accuracy for identifying the risk of stroke within three years in CSVD patients.</p></div><div><h3>Conclusion</h3><p>The integrated risk stratification model, incorporating machine learning algorithms and MRI parameters, demonstrated strong predictive potential for stroke within three years in patients with CSVD. This model offered valuable insights for personalized interventions and clinical decision-making in the management of CSVD.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000591/pdfft?md5=5b5fb18e030bda6475cb416a4a958798&pid=1-s2.0-S2472630324000591-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Establishment and validation of a risk stratification model for stroke risk within three years in patients with cerebral small vessel disease using a combined MRI and machine learning algorithm\",\"authors\":\"\",\"doi\":\"10.1016/j.slast.2024.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Cerebral small vessel disease (CSVD) is a major cause of stroke, particularly in the elderly population, leading to significant morbidity and mortality. Accurate identification of high-risk patients and timing of stroke occurrence plays a crucial role in patient prevention and treatment. The study aimed to establish and validate a risk stratification model for stroke within three years in patients with CSVD using a combined MRI and machine learning algorithm approach.</p></div><div><h3>Methods</h3><p>The assessment encompassed demographic, clinical, biochemical, and MRI-derived parameters. Correlation analysis, logistic regression, receiver operating characteristic (ROC) curve analysis, and nnet neural network algorithm were employed to evaluate the predictive value of machine learning algorithms and MRI parameters for stroke occurrence within 3 years in patients with CSVD.</p></div><div><h3>Results</h3><p>MRI-derived parameters, including average WMH volume, perfusion deficit volume, ischemic core volume, microbleed count, and perivascular spaces, exhibited strong correlations with stroke occurrence (<em>P</em> &lt; 0.001). MRI-derived parameters demonstrated high sensitivities (0.719 to 0.906), specificities (0.704 to 0.877), and AUC values (0.815 to 0.871). The combined model of machine learning algorithms and MRI parameters yielded an AUC value of 0.925, indicating significantly high predictive accuracy for identifying the risk of stroke within three years in CSVD patients.</p></div><div><h3>Conclusion</h3><p>The integrated risk stratification model, incorporating machine learning algorithms and MRI parameters, demonstrated strong predictive potential for stroke within three years in patients with CSVD. This model offered valuable insights for personalized interventions and clinical decision-making in the management of CSVD.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000591/pdfft?md5=5b5fb18e030bda6475cb416a4a958798&pid=1-s2.0-S2472630324000591-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000591\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑小血管疾病(CSVD)是中风的主要病因,尤其是在老年人群中,可导致严重的发病率和死亡率。准确识别高危患者和中风发生时间对患者的预防和治疗起着至关重要的作用。该研究旨在采用磁共振成像和机器学习算法相结合的方法,建立并验证 CSVD 患者三年内中风的风险分层模型:评估包括人口统计学、临床、生化和 MRI 衍生参数。采用相关性分析、逻辑回归、接收器操作特征曲线(ROC)分析和 nnet 神经网络算法评估机器学习算法和 MRI 参数对 CSVD 患者 3 年内发生卒中的预测价值:结果:MRI衍生参数,包括平均WMH体积、灌注缺损体积、缺血核心体积、微小出血点计数和血管周围间隙,与脑卒中发生率有很强的相关性(P < 0.001)。MRI 衍生参数表现出较高的敏感性(0.719 至 0.906)、特异性(0.704 至 0.877)和 AUC 值(0.815 至 0.871)。机器学习算法和磁共振成像参数的组合模型的AUC值为0.925,这表明该模型对识别CSVD患者三年内中风风险的预测准确性非常高:整合了机器学习算法和磁共振成像参数的综合风险分层模型对 CSVD 患者三年内的中风具有很强的预测潜力。该模型为 CSVD 管理中的个性化干预和临床决策提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishment and validation of a risk stratification model for stroke risk within three years in patients with cerebral small vessel disease using a combined MRI and machine learning algorithm

Background

Cerebral small vessel disease (CSVD) is a major cause of stroke, particularly in the elderly population, leading to significant morbidity and mortality. Accurate identification of high-risk patients and timing of stroke occurrence plays a crucial role in patient prevention and treatment. The study aimed to establish and validate a risk stratification model for stroke within three years in patients with CSVD using a combined MRI and machine learning algorithm approach.

Methods

The assessment encompassed demographic, clinical, biochemical, and MRI-derived parameters. Correlation analysis, logistic regression, receiver operating characteristic (ROC) curve analysis, and nnet neural network algorithm were employed to evaluate the predictive value of machine learning algorithms and MRI parameters for stroke occurrence within 3 years in patients with CSVD.

Results

MRI-derived parameters, including average WMH volume, perfusion deficit volume, ischemic core volume, microbleed count, and perivascular spaces, exhibited strong correlations with stroke occurrence (P < 0.001). MRI-derived parameters demonstrated high sensitivities (0.719 to 0.906), specificities (0.704 to 0.877), and AUC values (0.815 to 0.871). The combined model of machine learning algorithms and MRI parameters yielded an AUC value of 0.925, indicating significantly high predictive accuracy for identifying the risk of stroke within three years in CSVD patients.

Conclusion

The integrated risk stratification model, incorporating machine learning algorithms and MRI parameters, demonstrated strong predictive potential for stroke within three years in patients with CSVD. This model offered valuable insights for personalized interventions and clinical decision-making in the management of CSVD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Management of experimental workflows in robotic cultivation platforms. Application of conjugated polymer nanocomposite materials as biosensors in rehabilitation of ankle joint injuries in martial arts sports. Identification of m6A-related lncRNAs prognostic signature for predicting immunotherapy response in cervical cancer Regional developers’ community accelerates laboratory automation Accelerating covalent binding studies: Direct mass shift measurement with acoustic ejection and TOF-MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1