Seungchan An, In Guk Park, Seok Young Hwang, Junpyo Gong, Yeonjin Lee, Sungjin Ahn and Minsoo Noh*,
{"title":"化学信息学交叉阅读法揭示紫外线滤光片 Cinoxate 是一种致肥性过氧化物酶体增殖激活受体 γ 激动剂","authors":"Seungchan An, In Guk Park, Seok Young Hwang, Junpyo Gong, Yeonjin Lee, Sungjin Ahn and Minsoo Noh*, ","doi":"10.1021/acs.chemrestox.4c0009110.1021/acs.chemrestox.4c00091","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (<i>K</i><sub>i</sub> = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 8","pages":"1344–1355 1344–1355"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist\",\"authors\":\"Seungchan An, In Guk Park, Seok Young Hwang, Junpyo Gong, Yeonjin Lee, Sungjin Ahn and Minsoo Noh*, \",\"doi\":\"10.1021/acs.chemrestox.4c0009110.1021/acs.chemrestox.4c00091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (<i>K</i><sub>i</sub> = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\"37 8\",\"pages\":\"1344–1355 1344–1355\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00091\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00091","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist
This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.