Penghai Deng , Quansheng Liu , Haifeng Lu , Yuexiu Wu
{"title":"异质花岗岩的力学特性和破坏行为:基于 Weibull 的新型 FDEM 数值模型的启示","authors":"Penghai Deng , Quansheng Liu , Haifeng Lu , Yuexiu Wu","doi":"10.1016/j.enganabound.2024.105924","DOIUrl":null,"url":null,"abstract":"<div><p>Granite is often encountered in underground engineering, and its mechanical properties and failure behavior directly determine its stability and seepage characteristics. Unlike other rocks, granite is usually considered heterogeneous. Based on the Weibull distribution, this paper proposes a novel modeling method for heterogeneous granite via the combined finite-discrete element method (FDEM), and the mechanical properties and failure behavior of granite under uniaxial and triaxial compression, Brazilian splitting, and direct tension, as well as the influence of the loading rate, were investigated. The research results indicate that (1) the new modeling method can be used to construct a heterogeneous granite numerical model that includes three types of randomness (mineral spatial distribution randomness, mineral size randomness, and mineral shape randomness) and can quantitatively change the mineral composition; (2) uniaxial and triaxial compression simulation tests reveal that as the content of weak minerals (biotite) increases, the uniaxial compressive strength and equivalent cohesion decrease as a power function, and Young's modulus decreases as a linear function, while the equivalent internal friction angle decreases as an exponential function; (3) heterogeneous granite exhibits different mechanical properties and failure behaviors under Brazilian splitting and direct tension due to their different failure modes; typically, the tensile strength obtained from direct tension testing is lower than the value obtained from Brazilian splitting testing; and (4) as the loading rate increases, the strength, stiffness, and number of cracks of the specimen first stabilize and then increase as a power function, with a critical rate of <em>v</em>=1 m/s.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105924"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties and failure behavior of heterogeneous granite: Insights from a new Weibull-based FDEM numerical model\",\"authors\":\"Penghai Deng , Quansheng Liu , Haifeng Lu , Yuexiu Wu\",\"doi\":\"10.1016/j.enganabound.2024.105924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Granite is often encountered in underground engineering, and its mechanical properties and failure behavior directly determine its stability and seepage characteristics. Unlike other rocks, granite is usually considered heterogeneous. Based on the Weibull distribution, this paper proposes a novel modeling method for heterogeneous granite via the combined finite-discrete element method (FDEM), and the mechanical properties and failure behavior of granite under uniaxial and triaxial compression, Brazilian splitting, and direct tension, as well as the influence of the loading rate, were investigated. The research results indicate that (1) the new modeling method can be used to construct a heterogeneous granite numerical model that includes three types of randomness (mineral spatial distribution randomness, mineral size randomness, and mineral shape randomness) and can quantitatively change the mineral composition; (2) uniaxial and triaxial compression simulation tests reveal that as the content of weak minerals (biotite) increases, the uniaxial compressive strength and equivalent cohesion decrease as a power function, and Young's modulus decreases as a linear function, while the equivalent internal friction angle decreases as an exponential function; (3) heterogeneous granite exhibits different mechanical properties and failure behaviors under Brazilian splitting and direct tension due to their different failure modes; typically, the tensile strength obtained from direct tension testing is lower than the value obtained from Brazilian splitting testing; and (4) as the loading rate increases, the strength, stiffness, and number of cracks of the specimen first stabilize and then increase as a power function, with a critical rate of <em>v</em>=1 m/s.</p></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"168 \",\"pages\":\"Article 105924\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724003989\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724003989","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical properties and failure behavior of heterogeneous granite: Insights from a new Weibull-based FDEM numerical model
Granite is often encountered in underground engineering, and its mechanical properties and failure behavior directly determine its stability and seepage characteristics. Unlike other rocks, granite is usually considered heterogeneous. Based on the Weibull distribution, this paper proposes a novel modeling method for heterogeneous granite via the combined finite-discrete element method (FDEM), and the mechanical properties and failure behavior of granite under uniaxial and triaxial compression, Brazilian splitting, and direct tension, as well as the influence of the loading rate, were investigated. The research results indicate that (1) the new modeling method can be used to construct a heterogeneous granite numerical model that includes three types of randomness (mineral spatial distribution randomness, mineral size randomness, and mineral shape randomness) and can quantitatively change the mineral composition; (2) uniaxial and triaxial compression simulation tests reveal that as the content of weak minerals (biotite) increases, the uniaxial compressive strength and equivalent cohesion decrease as a power function, and Young's modulus decreases as a linear function, while the equivalent internal friction angle decreases as an exponential function; (3) heterogeneous granite exhibits different mechanical properties and failure behaviors under Brazilian splitting and direct tension due to their different failure modes; typically, the tensile strength obtained from direct tension testing is lower than the value obtained from Brazilian splitting testing; and (4) as the loading rate increases, the strength, stiffness, and number of cracks of the specimen first stabilize and then increase as a power function, with a critical rate of v=1 m/s.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.