针对大数据的高斯混合分布高斯过程模型

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-08-10 DOI:10.1016/j.chemolab.2024.105201
Yaonan Guan , Shaoying He , Shuangshuang Ren , Shuren Liu , Dewei Li
{"title":"针对大数据的高斯混合分布高斯过程模型","authors":"Yaonan Guan ,&nbsp;Shaoying He ,&nbsp;Shuangshuang Ren ,&nbsp;Shuren Liu ,&nbsp;Dewei Li","doi":"10.1016/j.chemolab.2024.105201","DOIUrl":null,"url":null,"abstract":"<div><p>In the era of chemical big data, the high complexity and strong interdependencies present in the datasets pose considerable challenges when constructing accurate parametric models. The Gaussian process model, owing to its non-parametric nature, demonstrates better adaptability when confronted with complex and interdependent data. However, the standard Gaussian process has two significant limitations. Firstly, the time complexity of inverting its kernel matrix during the inference process is <span><math><mrow><mi>O</mi><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. Secondly, all data share a common kernel function parameter, which mixes different data types and reduces the model accuracy in mixing-category data identification problems. In light of this, this paper proposes a mixture Gaussian process model that addresses these limitations. This model reduces time complexity and distinguishes data based on different data features. It incorporates a Gaussian mixture distribution for the inducing variables to approximate the original data distribution. Stochastic Variational Inference is utilized to reduce the computational time required for parameter inference. The inducing variables have distinct parameters for the kernel function based on the data category, leading to improved analytical accuracy and reduced time complexity of the Gaussian process model. Numerical experiments are conducted to analyze and compare the performance of the proposed model on different-sized datasets and various data category cases.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105201"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixture Gaussian process model with Gaussian mixture distribution for big data\",\"authors\":\"Yaonan Guan ,&nbsp;Shaoying He ,&nbsp;Shuangshuang Ren ,&nbsp;Shuren Liu ,&nbsp;Dewei Li\",\"doi\":\"10.1016/j.chemolab.2024.105201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the era of chemical big data, the high complexity and strong interdependencies present in the datasets pose considerable challenges when constructing accurate parametric models. The Gaussian process model, owing to its non-parametric nature, demonstrates better adaptability when confronted with complex and interdependent data. However, the standard Gaussian process has two significant limitations. Firstly, the time complexity of inverting its kernel matrix during the inference process is <span><math><mrow><mi>O</mi><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. Secondly, all data share a common kernel function parameter, which mixes different data types and reduces the model accuracy in mixing-category data identification problems. In light of this, this paper proposes a mixture Gaussian process model that addresses these limitations. This model reduces time complexity and distinguishes data based on different data features. It incorporates a Gaussian mixture distribution for the inducing variables to approximate the original data distribution. Stochastic Variational Inference is utilized to reduce the computational time required for parameter inference. The inducing variables have distinct parameters for the kernel function based on the data category, leading to improved analytical accuracy and reduced time complexity of the Gaussian process model. Numerical experiments are conducted to analyze and compare the performance of the proposed model on different-sized datasets and various data category cases.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"253 \",\"pages\":\"Article 105201\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001412\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001412","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在化学大数据时代,数据集的高度复杂性和强烈的相互依赖性给构建精确的参数模型带来了相当大的挑战。高斯过程模型由于其非参数性质,在面对复杂和相互依存的数据时表现出更好的适应性。然而,标准高斯过程有两个显著的局限性。首先,在推理过程中反演其核矩阵的时间复杂度为 O(n)3。其次,所有数据都共享一个共同的核函数参数,这就混合了不同的数据类型,降低了混合类别数据识别问题的模型精度。有鉴于此,本文提出了一种混合高斯过程模型来解决这些局限性。该模型降低了时间复杂性,并能根据不同的数据特征区分数据。它为诱导变量加入了高斯混合分布,以近似原始数据的分布。利用随机变量推理来减少参数推理所需的计算时间。诱导变量根据数据类别具有不同的核函数参数,从而提高了分析精度,降低了高斯过程模型的时间复杂性。通过数值实验,分析和比较了所提模型在不同规模数据集和不同数据类别情况下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixture Gaussian process model with Gaussian mixture distribution for big data

In the era of chemical big data, the high complexity and strong interdependencies present in the datasets pose considerable challenges when constructing accurate parametric models. The Gaussian process model, owing to its non-parametric nature, demonstrates better adaptability when confronted with complex and interdependent data. However, the standard Gaussian process has two significant limitations. Firstly, the time complexity of inverting its kernel matrix during the inference process is O(n)3. Secondly, all data share a common kernel function parameter, which mixes different data types and reduces the model accuracy in mixing-category data identification problems. In light of this, this paper proposes a mixture Gaussian process model that addresses these limitations. This model reduces time complexity and distinguishes data based on different data features. It incorporates a Gaussian mixture distribution for the inducing variables to approximate the original data distribution. Stochastic Variational Inference is utilized to reduce the computational time required for parameter inference. The inducing variables have distinct parameters for the kernel function based on the data category, leading to improved analytical accuracy and reduced time complexity of the Gaussian process model. Numerical experiments are conducted to analyze and compare the performance of the proposed model on different-sized datasets and various data category cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1