{"title":"测量低温条件下的热接触电阻和热接触设计","authors":"Jared Valois, Gregory Nellis, John Pfotenhauer","doi":"10.1016/j.cryogenics.2024.103922","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of technologies that operate at cryogenic temperatures requires that the cooling systems used to maintain these systems be carefully designed. This research focuses on understanding the thermal performance of the heat path between the heat source (the technology being cooled) and the cooling source (the cryocooler). Specifically, this work characterizes through measurement the thermal properties of common heat path materials, with a focus on bulk thermal conductivity and thermal contact resistance of pressed contacts. A framework for using these measurements to optimize a bolted contact is proposed and demonstrated.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"142 ","pages":"Article 103922"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of thermal contact resistance and the design of thermal contacts at cryogenic temperatures\",\"authors\":\"Jared Valois, Gregory Nellis, John Pfotenhauer\",\"doi\":\"10.1016/j.cryogenics.2024.103922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prevalence of technologies that operate at cryogenic temperatures requires that the cooling systems used to maintain these systems be carefully designed. This research focuses on understanding the thermal performance of the heat path between the heat source (the technology being cooled) and the cooling source (the cryocooler). Specifically, this work characterizes through measurement the thermal properties of common heat path materials, with a focus on bulk thermal conductivity and thermal contact resistance of pressed contacts. A framework for using these measurements to optimize a bolted contact is proposed and demonstrated.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":\"142 \",\"pages\":\"Article 103922\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001425\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001425","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Measurement of thermal contact resistance and the design of thermal contacts at cryogenic temperatures
The prevalence of technologies that operate at cryogenic temperatures requires that the cooling systems used to maintain these systems be carefully designed. This research focuses on understanding the thermal performance of the heat path between the heat source (the technology being cooled) and the cooling source (the cryocooler). Specifically, this work characterizes through measurement the thermal properties of common heat path materials, with a focus on bulk thermal conductivity and thermal contact resistance of pressed contacts. A framework for using these measurements to optimize a bolted contact is proposed and demonstrated.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics