三维断裂网络中的气体输送贝叶斯学习法

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-08-10 DOI:10.1016/j.cageo.2024.105700
Yingqi Shi , Donald J. Berry , John Kath , Shams Lodhy , An Ly , Allon G. Percus , Jeffrey D. Hyman , Kelly Moran , Justin Strait , Matthew R. Sweeney , Hari S. Viswanathan , Philip H. Stauffer
{"title":"三维断裂网络中的气体输送贝叶斯学习法","authors":"Yingqi Shi ,&nbsp;Donald J. Berry ,&nbsp;John Kath ,&nbsp;Shams Lodhy ,&nbsp;An Ly ,&nbsp;Allon G. Percus ,&nbsp;Jeffrey D. Hyman ,&nbsp;Kelly Moran ,&nbsp;Justin Strait ,&nbsp;Matthew R. Sweeney ,&nbsp;Hari S. Viswanathan ,&nbsp;Philip H. Stauffer","doi":"10.1016/j.cageo.2024.105700","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"192 ","pages":"Article 105700"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098300424001833/pdfft?md5=f8b3ab68ca2f9563aa76f642b21453d3&pid=1-s2.0-S0098300424001833-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian learning of gas transport in three-dimensional fracture networks\",\"authors\":\"Yingqi Shi ,&nbsp;Donald J. Berry ,&nbsp;John Kath ,&nbsp;Shams Lodhy ,&nbsp;An Ly ,&nbsp;Allon G. Percus ,&nbsp;Jeffrey D. Hyman ,&nbsp;Kelly Moran ,&nbsp;Justin Strait ,&nbsp;Matthew R. Sweeney ,&nbsp;Hari S. Viswanathan ,&nbsp;Philip H. Stauffer\",\"doi\":\"10.1016/j.cageo.2024.105700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"192 \",\"pages\":\"Article 105700\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001833/pdfft?md5=f8b3ab68ca2f9563aa76f642b21453d3&pid=1-s2.0-S0098300424001833-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001833\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001833","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于地下岩石材料的异质性,模拟气体流经地下岩石裂缝是一个特别具有挑战性的问题。使用离散断裂网络(DFN)模型进行高保真模拟是预测地表气体颗粒突破时间的一种方法,但对计算要求很高。我们提出了一种贝叶斯机器学习方法,可作为这些三维 DFN 模拟的高效替代模型或模拟器。我们的模型对具有给定统计特性的少量模拟数据进行训练,并利用基于图/路径的断裂网络分解,快速预测具有这些统计特性的 DFN 上突破时间分布的定量值。该方法基于高斯过程回归 (GPR),预测结果在高保真 DFN 模拟结果的 20%-30% 范围内。与之前提出的方法不同,该方法还提供了不确定性量化,输出置信区间,鉴于地下建模固有的不确定性,置信区间至关重要。我们训练有素的模型只需几分之一秒就能运行,大大快于精度相当的降阶模型(Hyman 等人,2017 年;Karra 等人,2018 年),比高保真模拟快多个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian learning of gas transport in three-dimensional fracture networks

Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1