{"title":"微波辐照下催化剂分解废塑料的加热特性模拟研究","authors":"","doi":"10.1016/j.joei.2024.101794","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave heating is a promising technique for heterogeneous catalytic reactions in plastic decomposition. The microwave-insensitive plastic material requires microwave-absorbing catalysts to facilitate catalytic-assisted decomposition and synergistic heating. However, the heating characteristics of catalyst particles within the microwave system is still unclear. In this study, the effects of particle size, particle arrangement direction, and particle shape on the microwave heating behavior of particles was investigated, and the model was experimentally validated and analyzed using infrared temperature data. The simulation results indicated that the heating rate increased as the particle size enlarged, with an average heating rate of 5.56 °C/s for the particle with a radius of 5 mm in comparison to 4.29 °C/s for that of 1 mm. Additionally, when particles were aligned parallel to the applied electric field, the electric field was intensely focused at the interparticle area, with a maximum electric field strength difference of 2.2 × 10<sup>4</sup> V/m in the samples. In contrast, the horizontal placement resulted in reduced electric field intensity (4.7 × 10<sup>3</sup> V/m) and lower temperatures (62 °C) near the areas adjacent to the particles compared to the maximum values in the particles. With respect to particle shape, cylindrical particles possessing larger aspect ratios exhibited superior heating performance due to the extended span of intraparticle microwave transmission aligned with the electric field direction but also resulted in increased thermal field distribution inhomogeneity. The research offers theoretical guidance to prevent catalyst sintering and promote microwave-assisted catalytic plastic decomposition.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation investigation on heating characteristics of catalysts under microwave irradiation for decomposition of waste plastic\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microwave heating is a promising technique for heterogeneous catalytic reactions in plastic decomposition. The microwave-insensitive plastic material requires microwave-absorbing catalysts to facilitate catalytic-assisted decomposition and synergistic heating. However, the heating characteristics of catalyst particles within the microwave system is still unclear. In this study, the effects of particle size, particle arrangement direction, and particle shape on the microwave heating behavior of particles was investigated, and the model was experimentally validated and analyzed using infrared temperature data. The simulation results indicated that the heating rate increased as the particle size enlarged, with an average heating rate of 5.56 °C/s for the particle with a radius of 5 mm in comparison to 4.29 °C/s for that of 1 mm. Additionally, when particles were aligned parallel to the applied electric field, the electric field was intensely focused at the interparticle area, with a maximum electric field strength difference of 2.2 × 10<sup>4</sup> V/m in the samples. In contrast, the horizontal placement resulted in reduced electric field intensity (4.7 × 10<sup>3</sup> V/m) and lower temperatures (62 °C) near the areas adjacent to the particles compared to the maximum values in the particles. With respect to particle shape, cylindrical particles possessing larger aspect ratios exhibited superior heating performance due to the extended span of intraparticle microwave transmission aligned with the electric field direction but also resulted in increased thermal field distribution inhomogeneity. The research offers theoretical guidance to prevent catalyst sintering and promote microwave-assisted catalytic plastic decomposition.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124002721\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002721","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Simulation investigation on heating characteristics of catalysts under microwave irradiation for decomposition of waste plastic
Microwave heating is a promising technique for heterogeneous catalytic reactions in plastic decomposition. The microwave-insensitive plastic material requires microwave-absorbing catalysts to facilitate catalytic-assisted decomposition and synergistic heating. However, the heating characteristics of catalyst particles within the microwave system is still unclear. In this study, the effects of particle size, particle arrangement direction, and particle shape on the microwave heating behavior of particles was investigated, and the model was experimentally validated and analyzed using infrared temperature data. The simulation results indicated that the heating rate increased as the particle size enlarged, with an average heating rate of 5.56 °C/s for the particle with a radius of 5 mm in comparison to 4.29 °C/s for that of 1 mm. Additionally, when particles were aligned parallel to the applied electric field, the electric field was intensely focused at the interparticle area, with a maximum electric field strength difference of 2.2 × 104 V/m in the samples. In contrast, the horizontal placement resulted in reduced electric field intensity (4.7 × 103 V/m) and lower temperatures (62 °C) near the areas adjacent to the particles compared to the maximum values in the particles. With respect to particle shape, cylindrical particles possessing larger aspect ratios exhibited superior heating performance due to the extended span of intraparticle microwave transmission aligned with the electric field direction but also resulted in increased thermal field distribution inhomogeneity. The research offers theoretical guidance to prevent catalyst sintering and promote microwave-assisted catalytic plastic decomposition.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.