未来大地测量卫星的轨道设计和重力场恢复

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geodesy Pub Date : 2024-08-19 DOI:10.1007/s00190-024-01884-9
Krzysztof Sośnica
{"title":"未来大地测量卫星的轨道设计和重力场恢复","authors":"Krzysztof Sośnica","doi":"10.1007/s00190-024-01884-9","DOIUrl":null,"url":null,"abstract":"<p>Spherical geodetic satellites tracked by satellite laser ranging (SLR) stations provide indispensable scientific products that cannot be replaced by other sources. For studying the time-variable gravity field, two low-degree coefficients <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub> derived from GRACE and GRACE Follow-On missions are replaced by the values derived from SLR tracking of geodetic satellites, such as LAGEOS-1/2, LARES-1/2, Starlette, Stella, and Ajisai. The subset of these satellites is used to derive the geocenter motion which is fundamental in the realization of the origin of the terrestrial reference frames. LAGEOS satellites provide the most accurate standard gravitational product GM of the Earth. In this study, we use the Kaula theorem of gravitational perturbations to find the best possible satellite height, inclination, and eccentricity for a future geodetic satellite to maximize orbit sensitivity in terms of the recovery of low-degree gravity field coefficients, geocenter, and GM. We also derive the common station-satellite visibility-coverability coefficient as a function of the inclination angle and satellite height. We found that the best inclination for a future geodetic satellite is 35°–45° or 135°–145° with a height of about 1500–1700 km to support future GRACE/MAGIC missions with <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub>. For a better geocenter recovery and derivation of the standard gravitational product, the preferable height is 2300–3500 km. Unfortunately, none of the existing geodetic satellites has the optimum height and inclination angle for deriving GM, geocenter, and <i>C</i><sub>20</sub> because there are no spherical geodetic satellites at the heights between 1500 (Ajisai and LARES-1) and 5800 km (LAGEOS-1/2, LARES-2).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"88 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbit design for a future geodetic satellite and gravity field recovery\",\"authors\":\"Krzysztof Sośnica\",\"doi\":\"10.1007/s00190-024-01884-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spherical geodetic satellites tracked by satellite laser ranging (SLR) stations provide indispensable scientific products that cannot be replaced by other sources. For studying the time-variable gravity field, two low-degree coefficients <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub> derived from GRACE and GRACE Follow-On missions are replaced by the values derived from SLR tracking of geodetic satellites, such as LAGEOS-1/2, LARES-1/2, Starlette, Stella, and Ajisai. The subset of these satellites is used to derive the geocenter motion which is fundamental in the realization of the origin of the terrestrial reference frames. LAGEOS satellites provide the most accurate standard gravitational product GM of the Earth. In this study, we use the Kaula theorem of gravitational perturbations to find the best possible satellite height, inclination, and eccentricity for a future geodetic satellite to maximize orbit sensitivity in terms of the recovery of low-degree gravity field coefficients, geocenter, and GM. We also derive the common station-satellite visibility-coverability coefficient as a function of the inclination angle and satellite height. We found that the best inclination for a future geodetic satellite is 35°–45° or 135°–145° with a height of about 1500–1700 km to support future GRACE/MAGIC missions with <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub>. For a better geocenter recovery and derivation of the standard gravitational product, the preferable height is 2300–3500 km. Unfortunately, none of the existing geodetic satellites has the optimum height and inclination angle for deriving GM, geocenter, and <i>C</i><sub>20</sub> because there are no spherical geodetic satellites at the heights between 1500 (Ajisai and LARES-1) and 5800 km (LAGEOS-1/2, LARES-2).</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01884-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01884-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

卫星激光测距(SLR)站跟踪的球面大地测量卫星提供了其他来源无法替代的不可或缺的科学产品。为了研究时变重力场,用 LAGEOS-1/2、LARES-1/2、Starlette、Stella 和 Ajisai 等大地测量卫星激光测距跟踪得出的值取代了 GRACE 和 GRACE Follow-On 任务得出的两个低度系数 C20 和 C30。这些卫星的子集用于推导地心运动,而地心运动是实现地面参照基准原点的基础。LAGEOS 卫星提供了最精确的地球标准重力产品 GM。在这项研究中,我们利用引力扰动的考拉定理为未来的大地测量卫星找到了最佳的卫星高度、倾角和偏心率,以便在恢复低度重力场系数、地心和全球定位系统方面最大限度地提高轨道灵敏度。我们还推导出了作为倾角和卫星高度函数的普通台站-卫星能见度-可覆盖性系数。我们发现,未来大地测量卫星的最佳倾角为 35°-45° 或 135°-145°,高度约为 1500-1700 公里,以支持未来的 GRACE/MAGIC 任务与 C20 和 C30。为了更好地恢复地心和推导标准重力产品,最好的高度是 2300-3500 公里。遗憾的是,现有的大地测量卫星都不具备推导 GM、地心和 C20 的最佳高度和倾角,因为在 1500 公里(Ajisai 和 LARES-1)和 5800 公里(LAGEOS-1/2、LARES-2)之间的高度上没有球形大地测量卫星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orbit design for a future geodetic satellite and gravity field recovery

Spherical geodetic satellites tracked by satellite laser ranging (SLR) stations provide indispensable scientific products that cannot be replaced by other sources. For studying the time-variable gravity field, two low-degree coefficients C20 and C30 derived from GRACE and GRACE Follow-On missions are replaced by the values derived from SLR tracking of geodetic satellites, such as LAGEOS-1/2, LARES-1/2, Starlette, Stella, and Ajisai. The subset of these satellites is used to derive the geocenter motion which is fundamental in the realization of the origin of the terrestrial reference frames. LAGEOS satellites provide the most accurate standard gravitational product GM of the Earth. In this study, we use the Kaula theorem of gravitational perturbations to find the best possible satellite height, inclination, and eccentricity for a future geodetic satellite to maximize orbit sensitivity in terms of the recovery of low-degree gravity field coefficients, geocenter, and GM. We also derive the common station-satellite visibility-coverability coefficient as a function of the inclination angle and satellite height. We found that the best inclination for a future geodetic satellite is 35°–45° or 135°–145° with a height of about 1500–1700 km to support future GRACE/MAGIC missions with C20 and C30. For a better geocenter recovery and derivation of the standard gravitational product, the preferable height is 2300–3500 km. Unfortunately, none of the existing geodetic satellites has the optimum height and inclination angle for deriving GM, geocenter, and C20 because there are no spherical geodetic satellites at the heights between 1500 (Ajisai and LARES-1) and 5800 km (LAGEOS-1/2, LARES-2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
期刊最新文献
Modified Bayesian method for simultaneously imaging fault geometry and slip distribution with reduced uncertainty, applied to 2017 Mw 7.3 Sarpol-e Zahab (Iran) earthquake Global 3D ionospheric shape function modeling with kriging Spherical radial basis functions model: approximating an integral functional of an isotropic Gaussian random field Capture of coseismic velocity waveform using GNSS raw Doppler and carrier phase data for enhancing shaking intensity estimation Derivation of the Sagnac (Earth-rotation) correction and analysis of its accuracy for GNSS applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1