生态过滤驱动鱼类皮肤微生物群的快速时空动态变化。

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2024-08-19 DOI:10.1111/mec.17496
Hanna Berggren, Yeşerin Yıldırım, Oscar Nordahl, Per Larsson, Mark Dopson, Petter Tibblin, Daniel Lundin, Jarone Pinhassi, Anders Forsman
{"title":"生态过滤驱动鱼类皮肤微生物群的快速时空动态变化。","authors":"Hanna Berggren,&nbsp;Yeşerin Yıldırım,&nbsp;Oscar Nordahl,&nbsp;Per Larsson,&nbsp;Mark Dopson,&nbsp;Petter Tibblin,&nbsp;Daniel Lundin,&nbsp;Jarone Pinhassi,&nbsp;Anders Forsman","doi":"10.1111/mec.17496","DOIUrl":null,"url":null,"abstract":"<p>Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited—especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3–V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17496","citationCount":"0","resultStr":"{\"title\":\"Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes\",\"authors\":\"Hanna Berggren,&nbsp;Yeşerin Yıldırım,&nbsp;Oscar Nordahl,&nbsp;Per Larsson,&nbsp;Mark Dopson,&nbsp;Petter Tibblin,&nbsp;Daniel Lundin,&nbsp;Jarone Pinhassi,&nbsp;Anders Forsman\",\"doi\":\"10.1111/mec.17496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited—especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3–V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"33 18\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17496\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17496\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17496","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮肤微生物组具有重要的功能,但有关其物种组合结构的驱动因素和过程的知识却很有限,尤其是对非模式生物而言。在本研究中,通过对鱼类宿主的 16S rRNA 基因 V3-V4 区域代谢编码的扩增子序列变异进行高通量测序,对鱼类皮肤微生物组进行了评估:(i) 在淡水和咸水栖息地之间转移,以研究环境的作用;(ii) 用抗菌消毒剂处理,以重新启动微生物群,并研究群落组装和优先效应;(iii) 单独或成对饲养,以研究社会环境和微生物在宿主间传播的作用。研究结果表明,鱼皮微生物组蕴藏着高度动态的微生物组成,与环境水中的浮游细菌群落截然不同。微生物组的组成首先因转移到咸水或淡水栖息地而发生分化。当淡水个体被转移回咸水后,它们的微生物组组成向咸水生境中的鱼类微生物组靠拢。总之,外部环境条件和个体特异性因素共同决定了群落组成的动态变化,而宿主间的散布影响微乎其微。微生物群组成的动态似乎不受重启处理的影响,这表明微生物群对干扰具有很强的适应能力。研究结果表明,在许多宿主-微生物组系统中发现的无法解释的变异是由个体间变异引起的,但其机理基础仍有待确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes

Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited—especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3–V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
The Genomic Signature and Transcriptional Response of Metal Tolerance in Brown Trout Inhabiting Metal-Polluted Rivers. Can Transcriptomics Elucidate the Role of Regulation in Invasion Success? Genomic Architecture Underlying the Striking Colour Variation in the Presence of Gene Flow for the Guinan Toad-Headed Lizard. A Natural Hybrid Zone of Swordtails Reveals Molecular Insights Into the Adaptive Genomic Basis of Thermal Tolerance. Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1